PROJECT: 63-01

OFFSITE SUBSURFACE INVESTIGATION POWERINE REFINERY SANTA FE SPRINGS, CALIFORNIA

February 19, 1996

Prepared in part & submitted by:

Powerine Oil Company 12354 Lakeland Road P.O. Box 2108 Santa Fe Springs, California 90670

TriHydro Corporation

920 Sheridan Street Laramie, Wyoming 82070 (307) 745-7474 FAX: (307) 745-7729

CERTIFICATION

I certify that the work presented in this report was performed under my supervision. To the best of my knowledge, the data contained herein are true and accurate, and the work was performed in accordance with professional standards.

Eleanor M. Hill

TriHydro Corporation

California Registered Geologist #5037 License expires December 31, 1996

Powerine Oil Co.

California Professional Engineer #C049885

License expires September 30, 1996

No. RG5037

TABLE OF CONTENTS

		<u>Page</u>
1	INTRODUCTION	
	1.2. Previous Assessment and Remediation Activities	
	1.3. Investigation Objectives	
2	METHODS OF INVESTIGATION	
	2.1. Borehole Drilling and Soil Sampling	
	2.1.1. Borehole Drilling	. 4
	2.1.2. Soil Sample Collection	. 4
	2.1.3. Field Screening	. 5
	2.1.4. Soil Sample Analysis	
	2.2. Groundwater Investigation	. 6
	2.2.1. Monitoring Well Installation	
	2.2.2. Groundwater Sampling	
	2.2.3. Groundwater Sample Analysis	
_		
3	RESULTS OF INVESTIGATION	10
	3.1. Site Geology and Hydrogeology	10
	3.2. Soil Quality	10
	3.2.1. Organic Soil Quality	11
	3.2.2. Inorganic Soil Quality	11
	3.3. Groundwater Quality	12
	3.3.1. Organic Groundwater Quality	12
	3.3.2. Inorganic Groundwater Quality	13
4	DISCUSSION OF FINDINGS	1.4
4	DISCUSSION OF FINDINGS	14
	4.1. Extent of Groundwater Contamination	14
	4.1.1. Petroleum Hydrocarbons	14
	4.1.2. Chlorinated VOCs	15
	4.2. Probable Sources of Groundwater Contamination	15
	4.2.1. Ashland Chemical Company	16
	4.2.2. Regional Oil Production Fields	17
	4.2.3. Torco USA Lubricants	18
	4.2.3.1. Torco Property Soil Quality Data	19
	4.2.3.2. Potential Migration of Contaminants	
	between Torco and Powerine	19
	4.2.4. Walker Property	21
	4.2.4.1. Walker Property Soil and Groundwater	
	Quality Data	22
	4.2.4.2. Potential Migration of Contaminants	
	from Powerine Areas of Walker Property	22
	4.2.5 California Metropolitan State Hospital	23
	4.2.5.1. MSH Soil and Groundwater Quality	
	Data	23

TABLE OF CONTENTS (continued)

		<u>Page</u>
	4.2.5.2. Potential Migration of Contaminants between MSH and Powerine	23
5	CONCLUSIONS	25
6	PROPOSED FUTURE INVESTIGATIONS	26
7	REFERENCES	27

LIST OF APPENDICES

Appendix

- A WELL LOGS
- B GROUNDWATER SAMPLING FIELD RECORDS
- C LABORATORY REPORTS
 - C-1 CHAIN-OF-CUSTODY FORMS
 - C-2 ORGANIC COMPOUNDS IN SOIL
 - C-3 LEAD IN SOIL
 - C-4 ORGANIC COMPOUNDS IN GROUNDWATER
 - C-5 LEAD IN GROUNDWATER
- D EXAMPLE GROUNDWATER SAMPLE CHROMATOGRAMS

LIST OF TABLES

<u>Table</u>	
2-1	Monitoring Well Survey Data, Powerine Refinery, Santa Fe Springs, California
3-1	Groundwater Elevations, Powerine Refinery, Santa Fe Springs, California
3-2	Organic Compounds and Lead in Soil, Powerine Refinery, Santa Fe Springs, California
3-3	Volatile Organic Compounds in Groundwater, Powerine Refinery, Santa Fe Springs, California
3-4	Total Petroleum Hydrocarbons in Groundwater and Carbon-Range Analysis, Powerine Refinery, Santa Fe Springs, California
3-5	Chromatogram Assessments of Groundwater Samples from Powerine Wells
3-6	Inorganic Compounds in Groundwater, Powerine Refinery, Santa Fe Springs California
4-1	Torco Property Soil Analytical Data

LIST OF FIGURES

<u>Figure</u>	
1-1	Powerine Refinery and Surrounding Properties
1-2	Powerine Refinery Units
2-1	Groundwater Monitoring Wells Installed in December 1995
3-1	Groundwater Flow Map, Powerine Refinery Area (December 1995 - January 1996)
3-2	Benzene in Groundwater, Powerine Refinery Area (December 1995)
3-3	Toluene in Groundwater, Powerine Refinery Area (December 1995)
3-4	Total Petroleum Hydrocarbons as Gasoline in Groundwater, Powerine Refinery Area (December 1995)
3-5	1,2-Dichloroethane in Groundwater, Powerine Refinery Area (December 1995)
3-6	TCE in Groundwater, Powerine Refinery Area (December 1995)
3-7	PCE in Groundwater, Powerine Refinery Area (December 1995)
4-1	Potential Groundwater Contamination Sources Near the Powerine Refinery
4-2	1927 Topographic Map Showing Oil Production and Disposal Near the Powerine Refinery
4-3	Torco Property Soil Sampling Locations

INTRODUCTION

Powerine Oil Company (POC) owns a refinery at 12354 Lakeland Road in Santa Fe Springs, California (Figure 1-1). The refinery is bounded by a closed drive-in movie theater and the Metropolitan State Hospital (MSH) to the south, industry to the west and east, and commercial development and office buildings to the north. A crude oil production field is also to the north (upgradient) of the refinery.

At the request of the Regional Water Quality Control Board (RWQCB), POC expanded its existing network of groundwater monitoring wells. The focus of the investigation was to characterize the offsite groundwater quality and flow direction. In addition, POC identified possible sources of groundwater contamination not associated with POC activities. The investigation included:

- Subsurface soil sampling and analysis;
- Monitoring well installation; and
- Groundwater sampling and analysis.

The soil sampling, monitoring well installation, and groundwater sampling for organic parameters were conducted in December 1995. Groundwater sampling for lead was conducted in December 1995 and January 1996.

1.1. Site History

A small refinery was built at the site in the late 1930s. Before construction of the refinery, crude oil production wells and unlined sumps (unrelated to POC activities) occupied areas of the refinery. Until 1968, the refinery was a 7,000-barrel per day (bpd) operation with distillation and thermal cracking. In 1968, POC increased refining capacity to 27,000 bpd with the addition of a catalytic cracker and alkylation units.

In 1974, POC increased refining capacity again to 44,000 bpd with addition of a second crude unit. In 1982, additional hydrotreaters, a hydrocracker, sulfur recovery units, a coker, coke storage, and additional tankage were added. The refinery was upgraded in 1994 to produce reformulated gasoline. In July 1995, POC shut down refinery operations except for some product storage and maintenance of existing equipment. Refining operations may resume in the future.

The refinery processed crude oil and raw naptha to make gasoline, diesel, jet fuel, and other fuels. Coke and sulfur were produced as refining by-products and

shipped to customers. The area south of Lakeland Road contains the main office building and truck loading facilities. The area east of Bloomfield Avenue contains the coke storage area and gasoline, jet, and diesel storage tanks. The remaining areas contain the processing units and crude oil, intermediate, and product tanks. The refinery units are shown on Figure 1-2.

1.2. Previous Assessment and Remediation Activities

RWQCB issued Cleanup and Abatement Order (CAO) 85-17 to POC and 14 other petroleum refineries in 1985. In the CAO, RWQCB required the refineries to:

- Define the nature and extent of free-floating hydrocarbon and impacted groundwater.
- Define the nature and extent of soil and soil vapor impacts.
- Provide information on subsurface geology and aquifer hydraulic properties.

POC submitted a workplan to RWQCB in May 1985 (IT Corporation, 1985) to conduct assessment activities. POC completed the investigation required by the CAO in the summer of 1985, except that the offsite extent of groundwater quality impacts was not completely defined. The results of the 1985 investigation were submitted to the RWQCB in January 1986 (IT Corporation, 1986).

In 1987, RWQCB requested that POC install offsite wells to define the extent of groundwater quality impacts and begin a program to recover free-floating hydrocarbon on the groundwater beneath the refinery. After about 2 years of negotiation, and with the assistance of RWQCB, POC gained access to down-gradient sites on the MSH property. POC installed the offsite wells in the summer of 1990. Data from the offsite wells were beneficial to further define the extent of groundwater quality impacts.

POC began hydrocarbon recovery in the summer of 1990. Hydrocarbon thicknesses in all POC monitoring and recovery wells were near or below measurable limits during the most recent monitoring events. Hydrocarbon recovery was discontinued in 1991 due to the absence of recoverable free hydrocarbon in the wells.

In July 1994, POC submitted a workplan to RWQCB to conduct an offsite investigation of groundwater quality (TriHydro, 1994). In August 1994, RWQCB approved the workplan. Well installation began 1 year after workplan approval due to negotiations with the State of California for access to the downgradient MSH.

1.3. Investigation Objectives

POC conducted this additional subsurface investigation from December 1995 to January 1996. The investigation focussed on:

- Determining the extent of refinery-related groundwater contamination downgradient of the refinery;
- Further characterizing upgradient groundwater quality moving onto the refinery;
- Assessing groundwater quality downgradient and cross-gradient of the Torco and Walker properties; and
- Characterizing soil quality at the well locations.

To accomplish these objectives, POC:

- Installed five groundwater monitoring wells downgradient from the refinery at MSH;
- Installed three monitoring wells at the north and east refinery boundaries;
- Collected three soil samples from each well borehole for chemical analysis;
- Collected water samples from the eight new monitoring wells and 15 previously existing POC wells for chemical analysis; and
- Studied the analytical data to determine water quality trends and possible sources of contamination.

METHODS OF INVESTIGATION

POC conducted a subsurface soil investigation between December 12, 1995, and January 10, 1996, to evaluate groundwater quality upgradient and downgradient of the refinery. POC analyzed data generated during previous investigations at the refinery to develop an efficient and effective subsurface investigation plan. The methods of investigation are discussed in this chapter, and the results of the investigation are discussed in Chapter 3.

2.1. Borehole Drilling and Soil Sampling

Eight boreholes were drilled and sampled during this investigation (Figure 2-1). Monitoring wells were then installed in all eight boreholes. Five of the boreholes, MW-603 through MW-607, were installed at MSH to evaluate groundwater and soil downgradient of the refinery. The other three boreholes, MW-105 through MW-107, were installed on the perimeter of the refinery to evaluate the background soil and groundwater quality.

2.1.1. Borehole Drilling

The boreholes were drilled by Layne Environmental Services of Fontana, California, with a CME-95 auger rig and 12-inch outside diameter (OD) hollow-stem augers. The boreholes were drilled and sampled to the groundwater table. To install monitoring wells, the boreholes were drilled deeper beneath the water table. A California-registered geologist supervised the drilling and soil sampling activities.

Soil cuttings generated during borehole drilling were contained at the site in 55-gallon drums. The drums were labelled with borehole name and depth intervals.

2.1.2. Soil Sample Collection

Soil samples were collected at 5-foot to 10-foot intervals through the hollow-stem augers with a 1.5-foot split-spoon sampler. The split spoon sampler was lined with 6-inch brass sample tubes. The soil samples were collected for initial field screening, chemical analysis, and lithologic description. Undisturbed soil samples were retained for chemical analysis in one brass tube. Recovery of undisturbed soil samples in the brass sample tubes minimized the loss of volatile organic compounds (VOCs) during sample collection and handling. The remaining soil was extruded for field screening and lithologic description. The lithologic descriptions were recorded on field log forms. Copies of the completed well logs are included in Appendix A.

The split-spoon sampler was decontaminated before collection of each soil sample. The sampler and brass sample tubes were scrubbed with a brush in a detergent and water wash and rinsed twice with water. The brass sample tubes were then allowed to air dry before use. All drilling equipment used downhole was steam cleaned at the refinery before use and between boreholes. Equipment decontamination water was disposed of in the POC onsite wastewater system.

Upon retrieval of the split-spoon sampler, one brass tube was removed from the sampler. The ends of the brass tube were covered with teflon sheeting and capped with plastic caps. The sample sleeves were then labeled and placed on ice in a cooler. Three soil samples were chosen for laboratory analysis from each borehole based on the field screening results.

2.1.3. Field Screening

An aliquot of soil was collected from each sampling interval for field screening, which involved measurement of total organic vapor (TOV) in the sample headspace. The soil samples were screened in the field for TOV to assist in selecting samples for laboratory analysis and to assess the degree and extent of potential subsurface degradation.

Each sample was placed in a plastic zipper bag for field screening of TOV. The soil sample was shaken in the bag to enhance volatilization and allowed to equilibrate for a few minutes. TOV was measured by inserting the probe of a photoionization detector (PID) through a small opening in the bag and monitoring the headspace vapors. The PID was calibrated at the beginning of each working day with a 100 part per million (ppm) hexane standard.

Field screening results are included in the well logs (Appendix A). The field screening results were used to select soil samples for laboratory analysis. While screening several of the samples, the PID appeared to react to humidity in the plastic bag. The PID indicated very high TOV concentrations, but no or little hydrocarbon odor was observed. In these samples, laboratory analysis confirmed the lack of hydrocarbon contamination.

2.1.4. Soil Sample Analysis

Soil samples were selected for laboratory analysis based on field screening results. Three soil samples were kept for laboratory analysis from each borehole:

- The sample from 10 feet below ground surface (ft-bgs);
- The apparently most degraded sample, based on field screening results;
- The soil sample collected closest to the capillary fringe.

The soil samples were transported under chain of custody to Jones Environmental Laboratories (Fullerton, California) and BC Laboratories (Bakersfield, California) for analysis. The soil samples were analyzed for:

- VOCs by EPA Methods 8010 and 8020;
- Total petroleum hydrocarbons as gasoline (TPH-G) by modified EPA Method 8015;
- Total petroleum hydrocarbons (TPH) extended carbon range (C₆ to C₄₄ +) by ASTM Method 2887; and
- Total lead by EPA Method 6010.

All soil analyses were conducted in accordance with EPA SW-846 methods or equivalent. The soil analytical results are discussed in Section 3.1.

2.2. Groundwater Investigation

Groundwater monitoring wells were installed and sampled to assess groundwater quality up-gradient and down-gradient of the POC refinery (Figure 2-1). Five monitoring wells, MW-603 through MW-607, were installed at MSH. These wells were installed to further monitor groundwater quality downgradient of the refinery. Wells MW-604 and MW-607 were installed at the eastern edge of MSH also to monitor groundwater potentially migrating from the Walker property. Well MW-606 was installed to delineate the southern extent of hydrocarbon impacted groundwater. Three monitoring wells, MW-105 through MW-107, were installed at the refinery to monitor groundwater that migrates onto the refinery property.

2.2.1. Monitoring Well Installation

The groundwater monitoring wells were designed and installed in general accordance with EPA RCRA Technical Enforcement Guidance Document (TEGD) specifications and California rules and regulations. Drilling and well installation were supervised by a California-registered geologist. The borehole logs and well completion diagrams are included in Appendix A.

The monitoring wells were constructed by Layne Environmental Services using CME-95 auger rig with 12-inch OD hollow-stem augers. Monitoring well boreholes were drilled from ground surface to between 95 ft-bgs and 108 ft-bgs. Soil samples were collected as discussed in Section 2.1. Each well was constructed with flush-threaded, 4-inch diameter, schedule 40 PVC screen and casing with a 6-inch flush-threaded bottom cap. The well was completed with 30 feet of 0.020-inch slotted screen installed across the water table to accommodate water level fluctuations.

A filter pack of #2/12 Monterey sand was emplaced in the annular space between the PVC screen and the borehole wall from total depth to about 3 feet above the top of the well screen. A seal of 1/4-inch bentonite pellets about 3 feet thick was then emplaced above the filter pack and hydrated. The annular space above the bentonite pellets was filled with bentonite grout to near ground surface.

In Well MW-607, the annulus was backfilled with bentonite chips to 24 ft-bgs. This was done to isolate a structurally sound but possibly not water tight PVC joint at 30 ft-bgs. The rest of the annulus was backfilled with bentonite grout.

Protective steel monuments, 8-inch diameter, were installed in concrete to complete the wells at the refinery. Flush-mounted steel vaults, 12-inch diameter, were installed in concrete to complete the wells installed at MSH. A locking plug cap was installed in each MSH well that inhibits infiltration of surface fluids into the monitoring well and limits tampering. The refinery wells were capped with PVC slip caps.

After installation, the monitoring wells were developed to reduce turbidity in the water samples. The wells were developed with a development rig. A surge block was used to surge groundwater through the filter pack to settle the filter pack and draw fine-grained material into the well. A steel bailer was used to remove the fine-grained material and turbid water from the well. After surging and bailing of the well, a submersible pump was used to over pump the well and reduce turbidity. About 150 gallons to 200 gallons of groundwater were evacuated from each well, until the discharge water became free of almost all sediment. The groundwater purged from the wells was contained in 55-gallon drums and transported to the refinery.

A measuring point was established at the top of the north side of each PVC well casing. Coory Engineering of Santa Fe Springs, California, surveyed the elevations and locations of the eight monitoring wells after completion. Elevations were measured relative to mean sea level to an accuracy of ± 0.01 feet. Horizontal locations were established relative to California Zone VII coordinates to an accuracy of ± 0.1 feet. The coordinates and elevations of the measuring points and surrounding ground surface are listed in Table 2-1.

2.2.2. Groundwater Sampling

Groundwater monitoring was conducted during well installation and in January 1996 to evaluate groundwater quality. During well installation in December 1995, the wells were sampled and analyzed for:

- VOCs by EPA Methods 8010 and 8020;
- TPH-G by modified EPA Method 8015; and
- TPH extended carbon range (C₆ to C₄₄+) by ASTM Method 2887.

The wells were sampled and analyzed in December 1995 and January 1996 for:

Dissolved lead by EPA Method 6020.

In December, the wells were sampled for organic compounds immediately after well development. Samples were collected from either the steel development bailer or from disposable polyethylene bailers. The samples were poured directly into the appropriate sample bottles and placed on ice in a cooler. The samples were then transported under chain of custody to Jones Environmental for analysis. Jones analyzed these samples within 24 hours so that POC could decide if installation of two additional, downgradient wells was necessary.

In January, the eight new wells were sampled for dissolved lead concentrations. The wells were initially gauged with an electronic oil/water interface probe. No product was detected in any of the wells. Subsequent static water levels were measured with an electronic water-level probe. Measurements were made to a precision of ± 0.01 foot. Groundwater elevation data are discussed in Section 3.1

To prepare the wells for sampling, each well was purged of at least three well volumes of groundwater with a PVC bailer before sample collection. Completed water sampling forms are included in Appendix B. The purged water was contained in 55-gallon drums. Following well preparation, groundwater samples were collected from the monitoring wells with stainless steel bailers. New polypropylene rope was used to purge and sample each well. All bailers were decontaminated before use in each well.

Specific conductance, temperature, and pH of groundwater samples from each well were measured before sample collection. Water samples collected for laboratory analysis were filtered in the field. The samples were then transferred into clean sample containers preserved with nitric acid.

In addition to samples from the monitoring wells, an equipment blank was submitted to the laboratory for quality assurance/quality control (QA/QC). All samples were labeled and placed on ice in a cooler immediately after collection.

2.2.3. Groundwater Sample Analysis

The groundwater samples were shipped under chain of custody to the analytical laboratories for chemical analysis. The samples were analyzed by Jones Environmental for:

- VOCs by EPA Methods 8010 and 8020;
- TPH-G by modified EPA Method 8015; and
- TPH extended carbon range (C_6 to C_{44} +) by ASTM Method 2887.

The samples were analyzed by Core Laboratories (Anaheim, California) for:

Dissolved lead by EPA Method 6020.

EPA Method 6020 requires that the water samples have very low or no turbidity. Because of slight turbidity in the filtered samples, Core Laboratories filtered the samples again and analyzed them by EPA Method 6020. However, since the samples were preserved with nitric acid before the laboratory filtered them, some sediment was dissolved by the acid. This may cause the dissolved lead results to be slightly elevated.

The equipment blank was analyzed for dissolved lead. All groundwater analyses were conducted in accordance with EPA SW-846 methods or equivalent. The groundwater analytical results are discussed in Section 3.2.

RESULTS OF INVESTIGATION

Geologic information from previous investigations at POC were combined with site-specific geologic information collected during this investigation to characterize the geology of the refinery and the surrounding area. Analytical data from this investigation was used to characterize the degree and extent of subsurface impacts to soil and groundwater. The results of the investigation are discussed in this section. A discussion of the conclusions is provided in chapters 4 and 5.

3.1. Site Geology and Hydrogeology

The site geology has been discussed in previous reports, including the workplan for this investigation (TriHydro, 1994). As stated in these reports, the site is underlain by the unconfined Exposition Aquifer. Groundwater depth fluctuates, but is usually about 80 ft-bgs to 100 ft-bgs.

Sediments encountered during this investigation are similar to sediments described in previous reports. The uppermost sediments are primarily silt and clay with variable amounts of sand and sand lenses. Thicker, coarse-grained sand units underlie the fine-grained soil at depths between 35 feet and 70 feet.

Groundwater was encountered in the deeper sand units during drilling at depths between 74 ft-bgs and 90 ft-bgs. After well development, water levels in the wells stabilized to between 74.6 ft-bgs and 91.2 ft-bgs.

Groundwater flows to the south at a gradient of about 0.007 feet/foot. Groundwater elevations were measured by TriHydro on January 8 and 9, 1996, in the eight new wells. Groundwater elevations were measured in the 15 older wells as part of the ongoing quarterly monitoring program by Miller Brooks Environmental in December 1995 (Miller Brooks, 1996). The elevations are listed in Table 3-1. The groundwater elevations and flow direction are plotted on Figure 3-1.

3.2. Soil Quality

Although this investigation was conducted primarily to determine the lateral extent of the groundwater plume, soil quality data were collected to determine if there were possible sources of groundwater contamination near the monitoring wells. POC conducted initial field screening of the soil samples during drilling to assess the soil

quality and to choose appropriate samples for laboratory analysis. Laboratory analysis was conducted to quantify the soil quality.

3.2.1. Organic Soil Quality

Three soil samples were collected from each of the eight monitoring well boreholes. These samples were analyzed for VOCs, TPH-G and TPH carbon range by Jones Environmental. The analytical results are summarized in Table 3-2. Chain-of-custody forms are included in Appendix C-1, and the laboratory reports are included in Appendix C-2.

No organic compounds were detected in soil samples from Well MW-107, located southeast of the East Tank Farm. At MSH, no organic compounds were detected in soil samples from wells MW-605, MW-606, or MW-607, all in the central, downgradient portion of MSH (Figure 2-1)

Xylenes were detected at trace amounts in soil samples from Well MW-105, located northwest of the West Tank Farm (Figure 2-1). Toluene was also detected slightly above the detection limit in the sample from 10 ft-bgs. TPH-G was not detected.

In Well MW-106, located upgradient of the East Tank Farm (Figure 2-1), the highest VOC and TPH-G concentrations were detected in the soil sample from the capillary fringe. A low concentration of 0.014 milligrams/kilogram (mg/kg) of xylenes was also detected in the shallowest sample (10 ft-bgs).

Chlorinated hydrocarbon 1,1,1-trichloroethane (1,1,1-TCA) was detected at trace amounts in the shallow and the deep soil samples from Well MW-603. No other organic compounds were detected.

The samples from MW-604 contain concentrations of xylenes from 0.0065 mg/kg to 0.014 mg/kg. The sample from 60 ft-bgs also contains a low concentration (1.3 mg/kg) of TPH-G.

3.2.2. Inorganic Soil Quality

The soil samples were analyzed for total lead concentrations by BC Laboratories. The lead results are summarized in Table 3-2. Chain-of-custody forms are included in Appendix C-1, and the laboratory reports are included in Appendix C-3.

All lead concentrations in soil were below 10 mg/kg. These concentrations probably reflect background concentrations of lead in soil. Background concentrations of lead from 70 mg/kg to 150 mg/kg in Los Angeles County were reported by Boerngen and Shacklette (1981).

3.3. Groundwater Quality

The previously existing wells at the refinery and MSH were sampled by Miller Brooks in December 1995 and analyzed for VOCs, TPH-G, TPH carbon range, and dissolved lead. The eight new wells were sampled by TriHydro Corporation and analyzed for VOCs, TPH-G, and TPH carbon range in December 1995 and for dissolved lead in January 1996. The results of these three sampling events are summarized in this section. Chain-of-custody forms are included in Appendix C-1, and the laboratory reports are included in appendices C-4 (organic compounds) and C-5 (lead).

3.3.1. Organic Groundwater Quality

Plume maps for benzene and toluene were produced, since review of the analytical data indicates the presence of gasoline constituents in the groundwater. Since benzene and toluene have relatively high vapor pressures and water solubility concentrations, the extent of these two VOCs would represent the farthest migration of gasoline components.

Benzene was detected in samples from 22 of the 23 wells sampled in December 1995 (Table 3-3). Detectable concentrations in the groundwater samples ranged from 23 mg/L (MW-600) to 0.00098 mg/L (MW-603). Benzene concentrations in groundwater samples are shown on Figure 3-2.

Toluene was detected in samples from 21 of the 23 wells, with concentration distributions that correspond to the distribution of benzene (Table 3-3). Detectable concentrations in the groundwater samples varied from 40 mg/L (MW-600) to 0.0006 mg/L (MW-104). Toluene concentrations in groundwater are shown on Figure 3-3.

TPH-G was detected in samples from 17 of the 23 wells (Table 3-4). Detectable concentrations in groundwater samples ranged from 12,000 mg/L (MW-204) to 0.64 mg/L (MW-203). The distribution of TPH-G follows that of benzene (Figure 3-4). Although TPH-G was detected in samples from wells MW-106 and MW-604, the sample chromatograms are not typical of gasoline (Table 3-5). This indicates that the gasoline-range TPH in the samples may be from multiple hydrocarbon sources.

Carbon chain analyses by ASTM Method 2887 were run on the samples in which TPH was detected. The chromatograms (EPA 8020/8015 and ASTM 2887) for wells within the gasoline plume and upgradient and downgradient of the plume were examined and are discussed in Section 4.1.1. A summary of chromatogram assessments is included in Table 3-5. The wells are listed in order of location, beginning upgradient (northward) and proceeding downgradient (southward). Example chromatograms from wells MW-106, MW-504, MW-605, and MW-607 are presented in Appendix D.

Chlorinated hydrocarbon concentrations in groundwater have different spatial distributions from the gasoline-related hydrocarbon concentrations (Table 3-3). Concentrations of 1,2-dichloroethane (1,2-DCA) were detected in samples from 15 of

the 23 wells. Detectable concentrations varied from 0.0012 (MW-604) to 0.013 mg/L (MW-504). Concentrations of 1,2-DCA in groundwater samples are shown on Figure 3-5. Concentrations of 1,2-DCA decrease south of the refinery (MW-600 and MW-601) and then increase farther south in MSH wells MW-603 and MW-606.

Trichloroethene (TCE) was detected in samples from nine of the 23 wells (Table 3-3). Detectable concentrations in the samples ranged from 0.0013 (MW-202) to 0.11 mg/L (MW-201). As shown on Figure 3-6, these seven wells are on the western edge of the refinery and MSH. TCE was also detected in the sample from MW-106, upgradient of the East Tank Farm.

Tetrachloroethane (PCE) concentrations in the groundwater samples are similar to the TCE concentrations (Table 3-3). As the isoconcentration map (Figure 3-7) shows, detections of PCE are limited to the western edge of the refinery and MSH. PCE was detected in samples from six of the 23 wells.

3.3.2. Inorganic Groundwater Quality

During the December 1995 and January 1996 sampling events, the groundwater samples were measured in the field for temperature, pH, and specific conductance. The field parameters are summarized in Table 3-6.

Specific conductance was highest in the sample from MW-104, at 3016 μ mhos/cm, and lowest in the sample from MW-201, at 803 μ mhos/cm. All groundwater samples had pH close to neutral, with values from 6.26 to 9.21.

The groundwater samples were analyzed for dissolved lead by Core Laboratories. The analytical results are summarized in Table 3-6. Chain-of-custody forms are included in Appendix C-1, and the laboratory reports are included in Appendix C-5.

Lead was detected in four of the samples. Detectable concentrations ranged from 0.005 mg/L (MW-105) to 0.33 mg/L (MW-600).

DISCUSSION OF FINDINGS (prepared by Powerine)

POC conducted this investigation to characterize the extent of soil and groundwater contamination near the refinery. To accomplish this, POC analyzed soil and groundwater samples collected near the refinery boundaries and downgradient of the refinery at MSH. From this investigation, POC found that a gasoline-range organic compound plume is centered around the southern part of the refinery.

In addition to the gasoline plume, there are contaminants in groundwater that appear to be from other, offsite sources. Soil analytical results do not suggest that POC is a source of these additional groundwater contaminants. No high levels of soil contamination were detected during this investigation.

4.1. Extent of Groundwater Contamination

Analysis of groundwater samples collected in December 1995 indicate multiple sources of groundwater contamination. There appear to be chlorinated VOCs and petroleum hydrocarbons in groundwater that are not related to refinery activities, but that are from offsite sources.

4.1.1. Petroleum Hydrocarbons

Analysis of all the available chromatograms indicate there are different chromatogram signatures in different areas near the refinery. These different signatures are illustrated by chromatograms from four groundwater samples:

- Background, full-range hydrocarbons in the sample from upgradient Well MW-106;
- Gasoline-range hydrocarbons in the sample from centrally-located Well MW-504;
- Unknown hydrocarbons with peaks in the C₂₆-C₂₈ range in the sample from Well MW-607 located south and west of the Walker property; and
- Trace hydrocarbon concentrations in the sample from downgradient Well MW-605.

Chromatograms from these four wells are included in Appendix D.

Chromatograms from the three upgradient wells (MW-104, MW-105, and MW-106) and from Well MW-107 (east of potential refinery sources) were analyzed to assess background water quality. The samples contain broad-range TPH concentrations that, although low in concentration, are indicative of the more soluble portions of crude oil.

The sample from MW-607, west and south of the Walker property, has a chromatogram pattern that is different from the patterns from the other groundwater samples. The highest chromatogram peaks were in the C_{26} - C_{28} range, outside the gasoline range of C_5 - C_{12} . These heavier hydrocarbons may be from releases of crude oil associated with historical production activities.

4.1.2. Chlorinated VOCs

The concentrations of TCE, PCE, and other chlorinated hydrocarbons in groundwater (figures 3-6 and 3-7) indicate offsite sources not related to the POC refinery. One source of chlorinated hydrocarbons is to the west of the refinery, in the vicinity of the Torco property. Additionally, chlorinated hydrocarbons were detected in MW-106, indicating a source to the north of the East Tank Farm.

The isoconcentration map of 1,2-DCA (Figure 3-5) indicates multiple sources of 1,2-DCA. Although 1,2-DCA has been used as a gasoline lead additive, it is also associated with solvents such as metal degreasers and paint, varnish, and finish removers. Industries that may use these solvents are upgradient and adjacent to the refinery.

Concentrations of 1,2-DCA in MW-105 indicates a source north of the refinery. In addition, the elevated concentrations of 1,2-DCA in wells MW-603 and MW-606 indicate another source northwest of MSH. Groundwater near these two wells flows slightly to the east (Figure 3-1). The lower concentrations of 1,2-DCA in wells MW-206, MW-600, and MW-601 may indicate that the 1,2-DCA farther south is not related to the 1,2-DCA at the refinery.

4.2. Probable Sources of Groundwater Contamination

At the request of the RWQCB, Powerine researched subsurface contamination at past and present industrial facilities near the refinery. As shown in Figure 4-1, the most apparent, potential sources within a 1/2-mile radius of the refinery are:

- The Ashland Chemical Company, located 1/2 mile northeast;
- Past and present crude oil production fields located near the refinery, primarily north, east, and west;

- The Torco USA Lubricants (Torco) facility, located directly west of Powerine;
- The Walker property, a California Superfund site located southeast of Powerine; and
- The California Metropolitan State Hospital (MSH), located south of Powerine.

Of these five additional sites, RWQCB asked Powerine to determine if any contamination from the refinery operations may have impacted soil or groundwater at the Torco, Walker, or MSH facilities or, conversely, if operations from these three facilities may have impacted the shallow aquifer in the vicinity of Powerine.

4.2.1. Ashland Chemical Company

The Ashland Chemical Company is located at 10505 Painter Avenue, Santa Fe Springs, approximately 1/2 mile northeast of the refinery. This location is upgradient to cross-gradient of the refinery and MSH, as indicated by the groundwater contours on Figure 3-1 and previous POC groundwater flow maps (AeroVironment, 1992 and ENSR, 1990). Ashland has used this property for the storage, blending, and distribution of petroleum fuels, organic solvents, and acids since the late 1950s.

As of 1991, free-phase hydrocarbons and organic vapors were being recovered through groundwater (20,000 gallons per day) and vapor extraction systems (HLA, 1993). Triennial reports on groundwater monitoring and sampling were submitted to RWQCB by Ashland. Representative VOCs detected in groundwater samples from the Ashland site and their highest concentrations include:

- TCE at 0.21 mg/L;
- PCE at 0.15 mg/L;
- 1,1-Dichloroethane (1,1-DCA) at 0.86 mg/L;
- 1,1-Dichloroethene (1,1-DCE) at 0.24 mg/L;
- 1,2-Dichloropropane at 6.1 mg/L;
- 1,1-Dichlorobenzene at 6.7 mg/L;
- Vinyl chloride at 2 mg/L,
- Benzene at 9 mg/L; and
- Toluene at 22 mg/L.

These VOCs may have migrated from the Ashland site toward the Powerine refinery and MSH wells. Therefore, these constituents detected in the eastern refinery and MSH wells may be from the Ashland site.

4.2.2. Regional Oil Production Fields

To investigate regional production fields, POC reviewed historical photographs and topographic maps of the area. The maps and photographs show profuse, active oil production surrounding the refinery to the north, west, and east since the 1900s.

Aerial photographs dating from 1928 through 1988 were reviewed at the Santa Fe Springs Planning Department and at Continental Aerial Photographs, Inc., Los Alamitos, California. Land use in 1928 was predominately agricultural in addition to oil field activity occurring approximately 1/2 mile northeast of Torco and Powerine. By 1938, a number of oil derricks were situated approximately 1/2 mile northeast of the subject sites.

As part of the Oil Field Reclamation Project, an effort to redevelop past and present oil production areas, current subsurface investigations are being conducted directly north of the refinery. RWQCB is overseeing investigative and remedial tasks. Powerine does not currently have access to the project data. Discussions with Santa Fe Springs city officials indicate that petroleum impacted soil has been treated via bioremediation technologies and that groundwater investigations have occurred.

The current groundwater contamination detected in wells near the refinery is likely to be due, at least in part, to previous oil production in the region. Historical waste management practices include releases to the ground of oil production wastes. POC's review of groundwater chromatograms indicate a current, background level of organic compounds that appear to be the more soluble, lighter portions of crude oil. The chromatogram from the MW-106 groundwater sample illustrates the crude oil background (Appendix D).

Typical oil field production-related, past wastemanagement practices are shown in a 1927 topographic map (Figure 4-2) for the areas directly south and southeast of the Powerine refinery, areas currently occupied by MSH and the Walker Property. Examples of notes incorporated on this map include:

- "Ditch partly filled with oil and running water,"
- "Oil soaked area with puddles of oil in parts,"
- "Area covered with oil deposit," and
- "Oil washed area."

Although the map describes oil contamination in 1927, similar oil field waste disposal practices continued into the 1970s and 1980s. Also, operating oil production

wells upgradient of the refinery may currently contribute to soil and groundwater contamination in the area through poor well seals and accidental releases.

Chromatograms of samples from wells MW-105, MW-106, MW-107, MW-203, MW-603, MW-604, and MW-605 show broad-range hydrocarbon contamination with no distinct patterns that may be from crude oil releases (Table 3-5). These wells are located both upgradient and downgradient of the refinery (Figure 3-1).

4.2.3. Torco USA Lubricants

The Torco facility is located at 12247 Lakeland Road, directly west of POC (Figure 4-1). A summary of past industrial operations was obtained from review of aerial photographs, topographic maps, building permits, and an interview with a former property owner. Figure 4-3 shows the Torco facility as it was in the 1980s.

In 1958, oil handling or refining operations was observed on the Torco property. The northeast corner and the areas in the vicinity of numerous tanks were dark in appearance. Review of photographs from 1973 through 1988 indicate that the numerous tanks were abandoned, and the building now located on the southeast section of the Torco was built.

The 1925, 1949, 1972, and 1981 editions of the U.S. Geological Survey Whittier quadrangle map were reviewed at the University of California, Riverside. The 1925 map indicates an oil production well located 300 feet west of Torco. The 1949 map confirms the oil handling facilities in the eastern portion of Torco. The 1972 and 1981 maps show the Powerine Tank Farm located directly east of the Torco site.

The Santa Fe Springs Building and Safety Department has records of building permit applications from 1941 to 1984 for the Torco property. Applications dated 1941 and 1943 were submitted to replace an existing warehouse structure with a pump house, laboratory upgrade, fractionation tank, clay press filter, cooling tower, and loading dock for use as an oil or lube refinery. These applications were made by the Pen-Lube Oil Company. The Thermic Oil Company applied for a permit to construct a facility for compounding lube oil in 1954, and submitted an application in 1964 for construction of a gas system. The Torco Oil Company owned the site beyond 1964, and submitted additional construction applications from 1964 until 1984.

Mr. Bob Lancaster, the owner and operator of the Torco site from 1950s until 1981, has provided the following chronology regarding uses of the Torco property:

- The southern portion of the site was used as a compressor plant by Mobil Oil during the 1930s to compress natural gas produced at the nearby Santa Fe Springs Oil Field.
- By 1942, the facility was converted to reclaim aircraft piston oil.

- After 1945, the facility was converted to reclaim crankcase and hydraulic oil. The process to reclaim and refine oil involved:
 - Treatment of the oil with concentrated sulfuric acid to precipitate out the residual carbon;
 - Heat treating the oil in a tower mixed with sodium silica;
 - Clarifying the sodium silica; and
 - Passing the oil through absorbent clay for removal of precipitated residual carbon. The spent clay was spread on the ground on site until enough material accumulated for off-site disposal.
- During the 1950s, reclamation of used oil no longer occurred, but instead blending of oils to produce high performance products continued. Clay filtration continued until 1960.
- In 1971, the refining/blending and storage facilities were removed and replaced with the main building now present on site.

4.2.3.1. Torco Property Soil Quality Data

Soil samples were collected from the Torco property via drilling and excavation. Sampling point locations are shown on Figure 4-3. Soil samples were analyzed for:

- TPH as diesel (modified EPA Method 8015); and
- Total recoverable petroleum hydrocarbons (TRPH by EPA Method 418.1).

Table 4-1 summarizes the soil quality data. This summary table shows the sample results as well as an examination of the relative concentrations of TPH versus TRPH. In all but two samples, the TRPH concentrations are higher than TPH concentrations. The mean TRPH concentration (3,805 mg/kg) is 2.23 times greater than the mean TPH concentration (1,704 mg/kg).

No groundwater quality data are available from the Torco site. Concentrations of TCE and PCE in groundwater samples from the POC wells (figures 3-6 and 3-7) indicate a source of chlorinated VOCs at or near the Torco site.

4.2.3.2. Potential Migration of Contaminants between Torco and Powerine

The soil data obtained from Torco does not indicate that contaminants from the Powerine facility have migrated laterally on to Torco property. Specifically, the soil analytical data suggest:

- The presence of heavier, non-refined products such as lube oil or motor oil; and
- A source of hydrocarbon contaminants from beneath the Torco building.

Chlorinated VOCs, specifically TCE and PCE, dissolved in groundwater are migrating on to the Powerine facility from the west and northwest (figures 3-6 and 3-7). The source of VOCs could include the Torco site or other sources to the west.

Torco management claims that refined product from POC has migrated in soil to the Torco property. The TRPH to TPH ratio of 2.23:1 indicates that the soil contamination is primarily heavier oils. If POC product were in the soil, it would be predominately gasoline, jet fuel, and diesel: C_5 - C_{23} . The products processed at the Torco facility were primarily motor oil and lube oil: C_{18} - C_{36} . TRPH by EPA Method 418.1 includes hydrocarbons from C_6 to C_{100} +. TPH as diesel by modified EPA Method 8015 includes hydrocarbons from C_4 to C_{30} . If gasoline, jet fuel, or diesel were present in the Torco soil, the TRPH to TPH ratio would be substantially closer to 1:1. The higher TRPH:TPH ratio of 2.23:1 indicates the presence of significant concentrations of C_{30} + hydrocarbons, potentially lube oil and motor oil. The elevated TRPH:TPH ratio could also be due in part to product weathering that first breaks down the lighter hydrocarbons.

As part of the Torco property investigation, five boreholes were drilled and sampled underneath the existing warehouse building, which is located adjacent to and above areas of soil contamination. Of the five borings collected from beneath the building, three samples (ER-55, ER-56, and ER-57) indicate near surface sources of soil contamination. Soil samples from these boreholes contained high TPH and TRPH concentrations at 5 ft-bgs to 20 ft-bgs and decreasing concentrations with depth.

For example, soil samples from soil boring S-B55 (ER-55) contained TRPH concentrations of 4,930 mg/kg at 5 ft-bgs, 19,600 mg/kg at 20 ft-bgs, 49 mg/kg at 45 ft-bgs, and 50 mg/kg at 75 ft-bgs. The samples contained TPH concentrations of 10,567 mg/kg at 20 feet bgs, 1 mg/kg at 45 ft-bgs, and 1 mg/kg at 75 feet bgs. The TRPH concentrations are greater than the TPH concentrations, indicating long-chain hydrocarbon contamination. The decreasing concentrations with depth indicate a near-surface source of contamination in this area.

A series of short trenches traversing the property line were dug and sampled, but the data did not provide conclusions as to the petroleum hydrocarbon source. In one trench, a soil sample (S-E35) collected at 8 ft-bgs from approximately 5 feet inside the Torco property line had TRPH:TPH concentrations of 2,875 mg/kg:1,265 mg/kg (2.27:1). The sample (S-E35A) collected 5 feet inside the Powerine property line and 7 ft-bgs in this same trench had TRPH:TPH concentrations of 9,936 mg/kg:7,865 mg/kg (1.26:1). The higher TRPH:TPH ratio in the sample from within the Torco boundaries suggests that this hydrocarbon originated from a source other than the source of hydrocarbons at POC.

However, samples from another trench approximately 80 feet north indicated a migration path from Torco to Powerine. The sample from the Torco property (S-E42) had TRPH:TPH concentrations of 3,080 mg/kg:1,355 mg/kg (2.27:1), and the sample from the Powerine property (S-E42A) had TRPH:TPH concentrations of 46 mg/kg:20 mg/kg (2.3:1). The similar TRPH:TPH ratio indicates a common source.

As discussed in previous sections, there appears to be a source of chlorinated VOCs, specifically TCE and PCE, in groundwater west of the refinery (figures 3-6 and 3-7). The source of these common degreasing solvents could be upgradient of or at the Torco site. The TCE and PCE distributions shown in figures 3-6 and 3-7 clearly indicate an offsite, non-POC source of these solvents.

4.2.4. Walker Property

The Walker property is currently owned by Texaco. POC leased the southwest property corner from 1968 to 1986. The site was used from approximately 1934 until 1986 for storage of hydrocarbon and equipment, and storage and disposal of used oil and oil well drilling fluids. Groundwater and soil data collected since the early 1980s indicate that:

- The area designated as the Lakewood section (the northwest portion of the site) is impacted by contaminants associated with used oil and lubricating fluids; and
- The area near the tanks operated by Powerine from 1968 to 1986 has been impacted by hydrocarbon contamination (HLA, 1993).

The site had several above-ground storage tanks (ASTs), USTs, and settling ponds. In the 1920s, three large ASTs and associated foundations and four earthen sumps were constructed at the site. Two of these tanks were removed before 1945. The soil near the tank foundation was stained, indicating contamination from the former tank (Cal EPA, 1992).

A large pond area was evident at the site before 1945. During the 1940s, two large ASTs and an earthen berm were constructed in the southwestern corner of the site, and 23 small ASTs were placed near ASTs that were installed in the 1920s. Also during the 1940s, three of the four earthen sumps were removed, the remaining sump was enlarged, and a new sump was added (Cal EPA, 1992).

During the 1950s, the remaining large AST installed in the 1920s was removed; seven of the 23 small ASTs installed in the 1940s were removed; and the large pond, noted before 1945, was reduced in size. Before 1962, eight of the 23 tanks were removed and the large pond area was filled in. Before 1974, the remaining sump was filled and six new ASTs were placed in the northwestern corner of the site. Before 1981, two more ASTs were placed in the northwestern corner, and an AST was placed in the central portion of the site (Cal EPA, 1992).

From 1968 to 1984, Lakewood Oil Company recycled used motor oil on the Lakewood portion of the site. Lakewood constructed office structures, unloading facilities, and numerous tanks. Used oil, polychlorinated biphenyls (PCBs), metals, and lubricating fluids were detected in soil samples from this area (HLA, 1993).

POC leased about 2 acres in the southwestern corner of the site between 1968 and 1986 (Figure 4-1). Powerine's stored jet fuel, gas oil, and fuel oil in two 80,000-barrel ASTs. These tanks were constructed before 1945, i.e., before Powerine leased the 2-acre plot. Liquefied petroleum gas, asphalt, and carbon dioxide were also loaded and unloaded on the Powerine leased area.

4.2.4.1. Walker Property Soil and Groundwater Quality Data

For this investigation, POC reviewed soil and groundwater quality data from the entire Walker property. Only the soil and groundwater data obtained from the Powerine portion of the Walker property is discussed in this report. The data summarized in this section were generated by consultants contracted to Texaco (HLA, 1993).

At least 25 borings were drilled on the Powerine portion of the site. One well was also installed between the two abandoned 80,000-barrel tanks. Soil samples were analyzed for:

- VOCs by EPA Methods 8010 and 8020; and
- TPH as diesel by modified EPA Method 8105.

No VOCs were detected in the soil samples. TPH as diesel concentrations ranged from less than the detection limit of 5 mg/kg to 12,000 mg/kg (HLA, 1993).

Groundwater samples from the on-site well were analyzed for VOCs. Powerine obtained groundwater monitoring data from November 1989 through September 1990. The highest sum of BETX concentrations for the period was 0.042 mg/L. Concentrations of 1,1-DCA (up to 0.0025 mg/L) and vinyl chloride (0.0071 mg/L in one sample only) were also detected (HLA, 1993).

4.2.4.2. Potential Migration of Contaminants from Powerine Areas of Walker Property

The soil data from the Walker property indicate a petroleum release was likely to have occurred at the site. Since the two abandoned 80,000-barrel tanks were built before 1945, it is not clear if a petroleum release occurred before or during Powerine's lease from 1968 to 1986.

Groundwater samples from upgradient monitoring wells MW-107 and MW-203 contained detectable concentrations of BETX and low concentrations of chlorinated VOCs. The sample from MW-203 also contained a low concentration of TPH as gasoline.

Compared to samples from the upgradient wells, groundwater samples from downgradient wells MW-604 and MW-607 contained higher concentrations of TPH as gasoline and higher or similar concentrations of BETX. The samples from MW-604 and MW-607 also contained low concentrations of chlorinated VOCs.

Only the sample from MW-607, located downgradient of the Walker Properties, had detectable concentrations of TPH (total of 31 mg/L) as measured by ASTM Method 2887. The highest carbon range concentration (26 mg/L) was detected in the C_{26} - C_{28} range, which would include the crude oil, used oil, jet fuel, and gas oil stored at the site.

4.2.5 California Metropolitan State Hospital

MSH is a 169-acre mental health facility operated by the State of California located directly downgradient of the Powerine refinery. Per discussions with MSH operations personnel, this facility used to be substantially larger before portions of its land to the south and east were sold. The facility contains several residential and hospital complexes and support services such as a kitchen, laundry, warehouses, boiler house, cogeneration facility, automotive fueling stations, and various maintenance shops. MSH has been in operation since 1915.

The facility operates or has operated at least seven underground storage tanks (USTs). Two USTs containing gasoline and diesel were located along the southern portion of MSH. These UST have failed leak detection tests. Additional USTs containing diesel, gasoline, and #6 bunker fuel have been used elsewhere at the facility (CET, 1995). Data generated by both Powerine and the State of California are summarized in this section.

4.2.5.1. MSH Soil and Groundwater Quality Data

Numerous soil samples were collected and analyzed near each of the facility's USTs. Soil data indicate a release of bunker fuel in the north-central portion of the facility and a release of gasoline from the southern USTs (CET, 1995).

MSH installed seven monitoring wells, and Powerine installed an additional seven wells on MSH property. In 1991, elevated concentrations of gasoline constituents were detected in groundwater samples from wells near the southern USTs (TriHydro, 1994). However, the recently-installed POC wells on MSH property show that the more upgradient gasoline plume does not extend to the southern USTs.

4.2.5.2. Potential Migration of Contaminants between MSH and Powerine

The POC refinery may be a source of dissolved gasoline constituents currently detected in groundwater beneath the northern portion of MSH. Figures 3-2 through 3-4 indicate that TPH as gasoline, benzene, and toluene migrated from the Powerine property to past MW-600 and MW-601. As discussed in the previous section, it

appears that gasoline contamination near the southern MSH USTs is unrelated to POC activities. In addition, it does not appear that the Powerine refinery is the source of longer chained hydrocarbons detected in the sample from MW-607.

Moreover, the refinery does not appear to be the source of dissolved chlorinated compounds detected in groundwater beneath MSH. Figures 3-6 and 3-7 indicate that the source of PCE and TCE in groundwater is to the west of the refinery. Although 1,2-DCA is present north of and within the refinery, the southern extent of 1,2-DCA in groundwater was defined during this investigation. Concentrations of 1,2-DCA in samples from wells MW-600 and MW-601 are lower than concentrations in samples from MW-603 and MW-605, suggesting a source of 1,2-DCA to the northwest of MSH (Figure 3-5).

The gasoline constituents detected in groundwater near the southern portion of MSH appear to be from the MSH USTs. The more upgradient gasoline plume does not mingle with the MSH gasoline plume. The past 10 years of Powerine groundwater flow data indicate groundwater flows to the south. Therefore, it is unlikely that the MSH gasoline plume will migrate towards the refinery.

CONCLUSIONS (prepared by Powerine)

Powerine achieved the objectives outlined in the RWQCB-approved workplan (TriHydro, 1994). The following concentrations were detected in groundwater samples from the 15 previously existing and 8 new wells:

- TPH as gasoline ranged from non-detectable (<0.5 mg/L) to 12,000 mg/L.
- Benzene ranged from non-detectable (<0.0005 mg/L) to 23 mg/L.
- 1,2-DCA ranged from non-detectable (<0.0005 mg/L) to 0.013 mg/L.

TCE, PCE, and degradation components beneath and downgradient of the refinery appear to emanate from sources located to the north and/or west, potentially including the Ashland Chemical Company and Torco property. Background BETX and other petroleum hydrocarbon constituents detected in upgradient wells may have originated from past and present oil production in the area or from existing nearby industry.

Soil and groundwater data from industrial facilities located adjacent to the refinery indicate that:

- The soil contamination evident at the Torco property appears to be attributed to Torco refining and lube oil manufacturing. The high proportion of TRPH to TPH as diesel suggests a higher proportion of petroleum hydrocarbons above C₃₀. High concentrations of these heavy hydrocarbons are present in lube oils, as used during Torco operations and not in refined products such as jet, diesel, or gasoline.
- Diesel and jet range hydrocarbons were detected in Walker property soil near the 80,000-barrel ASTs operated by Powerine between 1968 and 1986. Groundwater samples from Well MW-607 (south and west of the Walker Property) contained concentrations of C₂₆-C₂₈ hydrocarbons. The source of these hydrocarbons may be from regional production activities or existing local industry.
- The groundwater at Metropolitan State Hospital is impacted by dissolved gasoline constituents. The northern and southern gasoline plumes appear to be separated near the center of MSH.

PROPOSED FUTURE INVESTIGATIONS

Additional subsurface and regional investigation activities are needed to assess potential Powerine sources and additional regional sources of petroleum hydrocarbons and chlorinated VOCs. Analysis of data collected during this investigation prompt:

- Additional investigation to determine the presence or absence of chlorinated VOCs in refinery soil;
- Further research into waste management practices of regional oil production areas;
- Additional research on existing groundwater and soil data from MSH and upgradient oil production areas; and
- Investigation of Walker property AST operations in the Powerine leased area before Powerine operations in 1968.

As requested by RWQCB, POC will prepare a workplan for:

- A soil gas survey and confirmation soil sampling near the refinery laboratory to assess the extent and degree, if present, of VOCs and chlorinated VOCs in soil;
- Supplemental groundwater investigations, as warranted, to determine the extent and degree, if present, of degradation from the Powerine leased area at the Walker property;
- Implementation of a refinery source elimination program; and
- Identification and remediation of petroleum hydrocarbon contamination at the refinery.

The workplan and schedule for these planned activities will be provided to RWQCB by June 17, 1996. Powerine will also continue routine, semiannual groundwater monitoring. The next semiannual report will be submitted by August 15, 1996.

REFERENCES

- AeroVironment, Inc., 1992, "Groundwater Monitoring and Sampling, Third Quarter 1992, 12354 Lakeland Rd., Santa Fe Springs, Calif.", prepared for Powerine Oil Company, Santa Fe Springs, Calif., dated October 1992.
- Boerngen, J.G., and H.T. Shacklette, 1981, Chemical Analysis of Soils and Other Surficial Materials of the Conterminous United States: U.S. Geological Survey Open-File Report 81-197.
- California Environmental Protection Agency, 1992, Department of Toxic Substances Control. "First Amended Imminent or Substantial Endangerment Order and Remedial Action Order, Walker Property Site Docket Number I&/SE 91/92-009." October 26, 1992.
- Compliance Engineering and Technology Environmental Services, 1995, "Paramount Petroleum Company: Preliminary Investigation for Powerine Oil Company Refinery", dated November 1995.
- Dames and Moore, 1990, "Preliminary Site Assessment, 12220 East Florence Avenue and 12247 Lakeland Road, Santa Fe Springs, California for United Riggers and Erectors, Inc.", dated June 4, 1990.
- Earth Technology Corporation, 1992, "Revised Report of Subsurface Assessment, Metropolitan State Hospital, 11400 South Norwalk Boulevard, Norwalk, California", dated April 1992.
- ENSR Consulting and Engineering, 1990, "Quarterly Groundwater Monitoring and Sampling Report for January 1990", prepared for Powerine Oil Company, Santa Fe Springs, Calif., dated July 1992.
- Environmental Resolutions, Inc., 1992, "Report: Environmental Investigation Related to Delineation of Hydrocarbons at Torco USA Lubricants", dated July 31, 1992.
- Harding Lawson Associates, 1993, "Remedial Investigation/Feasibility Study Workplan, Walker Property Site, Santa Fe Springs, California", dated April 23, 1993.
- International Technology Corporation, 1985, "Revised Plan for Investigation and Site Assessment for Potential Subsurface Pollution at Powerine Oil Company Refinery, Santa Fe Springs, California, Project No. 850009/899", dated July 19, 1985.
- _____, 1986, "Investigation and Site Assessment for Subsurface Contamination at Powerine Oil Refinery, Santa Fe Springs, California, Project No. 850009", dated January 9, 1986.

- Miller Brooks Environmental, Inc, 1996, Personal communication from J. Pecchia to E. Hill of TriHydro Corp., January 18, 1996.
- TriHydro Corporation, 1994, "Offsite Investigative Workplan, Powerine Refinery, Santa Fe Springs, Calif." prepared for Powerine Oil Company, Santa Fe Springs, Calif., dated July 27, 1994.

Table 2-1. Monitoring Well Survey Data (Newly Installed Wells), Powerine Refinery, Santa Fe Springs, California.

				Point Elevation	Elevation of Ground Surface
	Vell	Northing	Easting	(ft-msl)	(ft-msl)
MV	V-105	4088888.7754	4266723.1991	138.63	137.11
MV	V-106	4088891.9937	4269057.8756	148.41	146.26
MV	V-107	4087934.4421	4269303.5933	148.93	146.41
MV	V-603	4086220.3218	4266163.4852	118.54	118.96
MV	V-604	4086767.4191	4268452.2254	138.16	137.14
MV	V-605	4085095.0390	4266130.0956	114.54	115.13
MV	V-606	4084786.9074	4267479.9318	113.89	114.42
MV	V-607	4085513.6416	4268583.5520	126.03	126.61

Table 3-1. Groundwater Elevations, Powerine Refinery, Santa Fe Springs, California.

Well	Date of Measurement	Measuring Point Elevation (ft-msl)	Depth to Product (ft-msl)	Depth to Water (ft-msl)	Elevation of Product Surface (ft-msl)	Elevation of Water Surface (ft-msl)	Product Thickness (ft)
MW-101	12/13/95	135.23	ND	75.15		60.08	
MW-103	12/13/95	136.95	ND	81.21		55.74	
MW-104	12/13/95	141.6	ND	77.21		64.39	
MW-105	1/9/96	138.63	ND	74.65		63.98	
MW-106	1/9/96	148.41	ND	82.75		65.66	
MW-107	1/9/96	148.93	ND	91.18		57.75	
MW-201	12/13/95	132.91	ND	76.79		56.12	
MW-202	12/13/95	137.89	ND	81.71		56.18	
MW-203	12/13/95	143.89	ND	87.38		56.51	
MW-204	12/13/95	140.14	ND	82.23		57.91	
MW-205	12/13/95	138.04	ND	76.28	-	61.76	
MW-206	12/13/95	129.93	ND	79.65		50.28	
MW-501	12/13/95	128.7	ND	79.09		49.61	
MW-502	12/13/95	130.82	ND	81.02		49.80	
MW-503	12/13/95	134.43	ND	79.37		55.06	
MW-504	12/13/95	134.51	ND	78.76		55.75	
MW-600	12/13/95	120.05	ND	72.02		48.03	
MW-601	12/13/95	125.03	ND	78.07		46.96	
MW-603	1/9/96	118.54	ND	75.8 0		42.74	
MW-604	1/9/96	138.16	ND	91.00		47.16	
MW-605	1/9/96	114.54	ND	75.06		39.48	
MW-606	1/9/96	113.89	ND	78.24		35.65	
MW-607	1/24/96	126.03	ND	88.62		37.41	

Table 3-2. Organic Compounds and Lead in Soil, Powerine Refinery, Santa Fe Springs, California.

				voc	s (8020)		VOCs (E	3010)	TPH Screen (ASTM 2887)		
Well	Sample Depth (ft-bgs)	Date	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xγlenes (mg/kg)	1,1,1-Trichloroethane (mg/kg)	Other Halocarbons (mg/kg)	C8-C44 + (mg/kg)	TPH as Gasoline (Mod. 8015) (mg/kg)	Lead (6010) (mg/kg)
MW-105	10	12/18/95	ND(0.005)	0.0055	ND(0.005)	0.034	ND(0.001)	ND(0.001)	ND(10)	ND(1)	4.9
	60	12/18/95	ND(0.005)	ND(0.005)	ND(0.005)	0.017	ND(0.001)	ND(0.001)	ND(10)	ND(1)	ND(2.5)
	70			ND(0.005)	ND(0.005)	0.022	ND(0.001)	ND(0.001)	ND(10)	ND(1)	ND(2.5)
MW-106	10		ND(0.005)	ND(0.005)	ND(0.005)	0.014	ND(0.001)	ND(0.001)	ND(10)	ND(1)	4.1
	60	12/17/95	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.001)	ND(0.001)	ND(10)	ND(1)	4.9
	80	12/18/95	0.01B	0.019	0.011	0.1	ND(0.001)	ND(0.001)	ND(10)	4.2	ND(2.5)
MW-107	10	12/16/95	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.001)	ND(0.001)	ND(10)	ND(1)	2.8
	30	12/16/95	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.001)	ND(0.001)	ND(10)	ND(1)	ND(2.5)
	70	12/17/95	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.001)	ND(0.001)	ND(10)	ND(1)	ND(2.5)
MW-603	10	12/20/95	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)	0.00099	ND(0.001)	ND(10)	ND(1)	6.7
	20	12/20/95	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.001)	ND(0.001)	ND(10)	ND(1)	5.5
	70	12/20/95	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)	0.001	ND(0.001)	ND(10)	ND(1)	6.2
MW-604	10	12/19/95	ND(0.005)	ND(0.005)	ND(0.005)	0.0065	ND(0.001)	ND(0.001)	ND(10)	ND(1)	6.8
	60	12/19/95	ND(0.005)	ND(0.005)	ND(0.005)	0.014	ND(0.001)	ND(0.001)	ND(10)	1.3	2.9
	80	12/19/95	ND(0.005)	ND(0.005)	ND(0.005)	0.013	ND(0.001)	ND(0.001)	ND(10)	ND(1)	ND(2.5)
MW-605	10	12/16/95	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.001)	ND(0.001)	ND(10)	ND(1)	6.7
	60	12/16/95	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.001)	ND(0.001)	ND(10)	ND(1)	5.4
	70	12/16/95	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.001)	ND(0.001)	ND(10)	ND(1)	3.6
MW-606	10	12/13/95	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.001)	ND(0.001)	ND(10)	ND(1)	2.5
	50	12/13/95	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.001)	ND(0.001)	ND(10)	ND(1)	4.3
	80	12/13/95	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.001)	ND(0.001)	ND(10)	ND(1)	5.5
MW-607	10	12/15/95	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.001)	ND(0.001)	ND(10)	ND(1)	2.8
	70	12/15/95		ND(0.005)	ND(0.005)	ND(0.005)	ND(0.001)	ND(0.001)	ND(10)	ND(1)	2.8
	80	12/15/95	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.005)	ND(0.001)	ND(0.001)	ND(10)	ND(1)	2.7

Table 3-3. Volatile Organic Compounds in Groundwater, Powerine Refinery, Santa Fe Springs, California.

			VOCs	(8020)		VOCs (8010)					
							1,1-	Methylene	t-1,2-	1,1-	
		Benzene	Toluene	Ethylbenzene	Xylenes	Vinyl Chloride	Dichloroethene	Chloride	Dichloroethene	Dichloroethane	
Well	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	
MW-101	12/13/95	0.09	0.0059	0.0064	0.0029	ND(0.0005)	0.067	0.0013	0.00097	0.0093	
MW-103	12/13/95	0.41	0.0041	0.0026	0.0077	0.0025	ND(0.0005)	ND(0.0005)	ND(0.0005)	0.0022	
MW-104	12/13/95	0.003	0.0006	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	
MW-105	12/21/95	0.011	0.0017	0.00081	0.0037	ND(0.0005)	0.013	ND(0.0005)	ND(0.0005)	0.0045	
MW-106	12/20/95	0.012	0.0035	0.01	0.01	ND(0.001)	ND(0.001)	ND(0.001)	0.015	ND(0.001)	
MW-107	12/21/95	0.016	0.00099	0.00077	0.0029	ND(0.0005)	ND(0.0005)	ND(0.0005)	0.0065	ND(0.0005)	
MW-201	12/13/95	0.44	0.042	0.12	0.094	ND(0.0005)	0.087	0.00069	0.0017	0.0094	
MW-202	12/13/95	0.33	0.021	0.051	0.074	0.0015	0.0013	ND(0.0005)	0.001	0.0018	
MW-203	12/13/95	0.037	0.001	0.012	0.0019	0.0014	ND(0.0005)	ND(0.0005)	0.0045	0.00061	
MW-204	12/13/95	0.88	0.67	0.24	0.86	0.0047	ND(0.0005)	ND(0.0005)	ND(0.0005)	0.0054	
MW-205	12/13/95	0.11	0.0013	0.018	0.037	ND(0.0005)	0.022	0.00058	0.0053	0.0073	
MW-206	12/13/95	0.11	0.016	0.032	0.1	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	
MW-501	12/13/95	1.6	0.1	0.88	2.2	ND(0.0025)	0.001	0.001	ND(0.0025)	0.0016	
MW-502	12/13/95	6.9	0.95	3.3	8.5	ND(0.002)	ND(0.002)	0.0011	ND(0.002)	0.00089	
MW-503	12/13/95	0.34	0.079	0.19	0.2	0.0014	0.12	0.001	0.0012	0.015	
MW-504	12/13/95	2.7	0.73	0.8	2.6	ND(0.0005)	ND(0.0005)	ND(0.0005)	0.00078	0.0027	
MW-600	12/13/95	23	40	18	101	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	
MW-601	12/13/95	18	17	130	100	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	0.0017	
MW-603	12/21/95	0.00098	0.0014	0.00062	0.0033	ND(0.0005)	0.042	ND(0.0005)	ND(0.0005)	0.0048	
MW-604	12/20/95	0.16	0.0033	0.0078	0.021	ND(0.001)	ND(0.001)	ND(0.001)	ND(0.001)	ND(0.001)	
MW-605	12/20/95	0.01	ND(0.0005)	ND(0.0005)	0.0049	ND(0.001)	0.0045	ND(0.001)	ND(0.001)	0.0016	
MW-606	12/19/95	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	
MW-607	12/19/95	0.033	0.0035	0.0017	0.0094	ND(0.0005)	0.0011	ND(0.0005)	ND(0.0005)	ND(0.0005)	
Trip blank 1	12/13/95	0.02	0.044	0.018	0.1	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	
Trip blank 1	12/13/95	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	
•					0.0013	ND(0.0005)	ND(0.0005)	ND(0.0005)		•	
Equipment blank	12/13/95	0.0006	ND(0.0005)	ND(0.0005)	0.0013	(כטטט.טןטאו	(C.0005)	(C.0005)	ND(0.0005)	ND(0.0005)	

63-01\2TABLES.XLS, 3-3

Table 3-3. Volatile Organic Compounds in Groundwater, Powerine Refinery, Santa Fe Springs, California.

		VOCs (8010)										
		c-1,2-	1,1,1-		1,2-							
		Dichloroethene	Trichloroethane	1,2-Dichloroethane	Dichloropropane	Trichloroethene	Tetrachloroethene	Other Halocarbons				
Well	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)				
MW-101	12/13/95	0.045	ND(0.0005)	0.0018	ND(0.0005)	0.1	0.036	ND(0.0005)				
				0.0018	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)				
MW-103	12/13/95	ND(0.0005)	ND(0.0005)		ND(0.0005)	ND(0.0005)		, ,				
MW-104	12/13/95	ND(0.0005)	ND(0.0005)	ND(0.0005)	• • • • • • • • • • • • • • • • • • • •		ND(0.0005)	ND(0.0005)				
MW-105	12/21/95	0.0094	ND(0.0005)	0.0033	ND(0.0005)	0.046	0.016	ND(0.0005)				
MW-106	12/20/95	0.033	ND(0.001)	ND(0.001)	ND(0.001)	0.0015	ND(0.001)	ND(0.001)				
MW-107	12/21/95	0.028	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)				
MW-201	12/13/95	0.044	0.0018	0.0044	0.00081	0.11	0.058	ND(0.0005)				
MW-202	12/13/95	0.013	ND(0.0005)	ND(0.0005)	0.0011	0.0013	ND(0.0005)	ND(0.0005)				
MW-203	12/13/95	0.04	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)				
MW-204	12/13/95	0.0047	ND(0.0005)	0.0082	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)				
MW-205	12/13/95	0.051	ND(0.0005)	0.002	ND(0.0005)	0.08	0.0028	ND(0.0005)				
MW-206	12/13/95	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)				
MW-501	12/13/95	0.0085	0.0037	0.0032	0.0013	ND(0.0025)	ND(0.0025)	ND(0.0025)				
MW-502	12/13/95	0.0069	ND(0.002)	0.0061	ND(0.002)	ND(0.002)	ND(0.002)	ND(0.002)				
MW-503	12/13/95	0.038	ND(0.0005)	0.0065	0.00072	0.085	ND(0.0005)	ND(0.0005)				
MW-504	12/13/95	0.014	ND(0.0005)	0.013	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)				
MW-600	12/13/95	0.0021	ND(0.0005)	0.0029	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)				
MW-601	12/13/95	0.0043	ND(0.0005)	0.0027	0.00089	ND(0.0005)	ND(0.0005)	ND(0.0005)				
MW-603	12/21/95	0.0067	ND(0.0005)	0.0057	ND(0.0005)	0.046	0.04	ND(0.0005)				
MW-604	12/20/95	0.0022	ND(0.001)	0.0012	ND(0,001)	ND(0.001)	ND(0.001)	ND(0.001)				
MW-605	12/20/95	ND(0.001)	ND(0.001)	ND(0.001)	ND(0.001)	0.018	0.014	ND(0.001)				
MW-606	12/19/95	ND(0.0005)	ND(0.0005)	0.0074	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)				
MW-607	12/19/95	ND(0.0005)	ND(0.0005)	ND(0,0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)				
Trip blank 1	12/13/95	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)				
Trip blank 2	12/13/95	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)				
	12/13/95		0.00095	ND(0.0005)	ND(0.0005)	ND(0.0005)	ND(0.0005)					
Equipment blank	12/13/95	ND{0.0005}	0.00095	(פטטט,טןעויי	(CUUU.UJU)	ND(0.0005)	ND(U.UUU3)	ND(0.0005)				

Table 3-4. Total Petroleum Hydrocarbons in Groundwater and Carbon-Range Analysis, Powerine Refinery, Santa Fe Springs, California

		_				Carbon C	hain Range (A	STM 2887)				
		TPH as	C6-C7	C8-C9	C10-C11	C12-C13	C14-C15	C16-C17	C18-C19	C20-C23	C24-C27	C28-C31
Mall	Data	Gasoline (8015)										
Well	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
MW-101	12/13/95	2.4	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)
MW-103	12/13/95	4.1	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)
MW-104	12/13/95	ND(0.5)						_				-
MW-105	12/21/95	ND(0.5)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)
MW-106	12/20/95	0.79	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)
MW-107	12/21/95	ND(0.5)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)
MW-201	12/13/95	9	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)
MW-202	12/13/95	6.5	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)
MW-203	12/13/95	0.64	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)
MW-204	12/13/95	12000	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)
MW-205	12/13/95	2.1	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)
MW-206	12/13/95	12	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)
MW-501	12/13/95	69	0.7	9.5	9.7	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)
MW-502	12/13/95	220	4	24	5.8	ND(5)	ND(5)	7.3	ND(5)	ND(5)	ND(5)	ND(5)
MW-503	12/13/95	8.2	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)
MW-504	12/13/95	99	0.4	12	15	9.5	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)
MW-600	12/13/95	3500	85	280	47	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)	ND(20)
MW-601	12/13/95	3500	140	680	200	22	31	27	10	ND(10)	ND(10)	ND(10)
MW-603	12/21/95	ND(0.5)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)
MW-604	12/20/95	1.9	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)
MW-605	12/20/95	ND(1)										
MW-606	12/19/95	ND(0.5)										
MW-607	12/19/95	1.2	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)	1.1	26	2.6
Trip blank 1	12/13/95	ND(0.5)	-				-					
Trip blank 2	12/13/95											
Equipment blank	12/13/95	ND(0.5)										

Table 3-4. Total Petroleum Hydrocarbons in Groundwater and Carbon-Range Analysis, Powerine Refinery, Santa Fe Springs, California

	_	Carb				
	_					Total
		C32-C35	C36-C39	C40-C43	C44+	C6-C44+
Well	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
MW-101	12/13/95	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)
MW-103	12/13/95	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)
MW-104	12/13/95	-				
MW-105	12/21/95	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)
MW-106	12/20/95	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)
MW-107	12/21/95	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)
MW-201	12/13/95	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)
MW-202	12/13/95	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)
MW-203	12/13/95	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)
MW-204	12/13/95	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)
MW-205	12/13/95	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)
MW-206	12/13/95	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)
MW-501	12/13/95	ND(5)	ND(5)	ND(5)	ND(5)	19.9
MW-502	12/13/95	ND(5)	ND(5)	ND(5)	ND(5)	41.1
MW-503	12/13/95	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)
MW-504	12/13/95	ND(5)	ND(5)	ND(5)	ND(5)	36.9
MW-600	12/13/95	ND(20)	ND(20)	ND(20)	ND(20)	412
MW-601	12/13/95	ND(10)	ND(10)	ND(10)	ND(10)	1110
MW-603	12/21/95	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)
MW-604	12/20/95	ND(10)	ND(10)	ND(10)	ND(10)	ND(10)
MW-605	12/20/95					
MW-606	12/19/95					
MW-607	12/19/95	1.3	ND(10)	ND(10)	ND(10)	31
Trip blank 1	12/13/95					
Trip blank 2	12/13/95					
Equipment blank	12/13/95					

Table 3-5. Chromatogram Assessments of Groundwater Samples from Powerine Wells. (prepared by Powerine)

Sum of Concentrations

		Concentrations		
Well Number	Analytical Method	(mg/L)	Proximity to Refinery	Chromatogram Assessment for All Analytical Procedures
MW-105	ASTM 2887 Mod. EPA 8015 EPA 8010 EPA 8020 (BTEX)	ND ND(0.5) 0.0922 0.0172	Upgradient	-No discernible pattern -Non-gasoline, broad range material -Benzene is approximately 25% of the aromatics
MW-104	ASTM 2887 Mod. EPA 8015 EPA 8010 EPA 8020 (BTEX)	ND ND(0.5) ND 0.0036	Upgradient	-No discernible pattern -Non-gasoline, broad range material -Light end volatiles (C4-C5) and heavy end volatiles (C11-C12) are present
MVV-106	ASTM 2887 Mod. EPA 8015 EPA 8010 EPA 8020 (BTEX)	ND 0.79 0.0495 0.0365	Upgradient	-No discernible pattern -Non-gasoline, broad range material
MW-205	ASTM 2887 Mod. EPA 8015 EPA 8010 EPA 8020 (BTEX)	ND 2.1 0.1710 0.1663	Inside Refinery	-Broad range material with indications of gasoline -O-xylene is absent -Heavy concentrations exist in the C4-C6 range
MVV-101	ASTM 2887 Mod. EPA 8015 EPA 8010 EPA 8020 (BTEX)	ND 2.4 0.2614 0.1052	Inside Refinery	-Similar pattern to that of MW-205 in the light volatile and background hydrocarbons -No gasoline is evident
MW-204	ASTM 2887 Mod. EPA 8015 EPA 8010 EPA 8020 (BTEX)	ND 12000 0.0183 2.65	Inside Refinery	-Gasoline aromatics dominate (BTEX approx. = 75% total aromatics) -No peaks exist past C10 on the FID

Sum of Concentrations

		Concentrations		
Well Number	Analytical Method	(mg/L)	Proximity to Refinery	Chromatogram Assessment for All Analytical Procedures
MW-107	ASTM 2887 Mod. EPA 8015 EPA 8010 EPA 8020 (BTEX)	ND ND(0.5) 0.0345 0.0207	East of Refinery	-No discernible pattern -Non-gasoline, broad range material
MW-203	ASTM 2887 Mod. EPA 8015 EPA 8010 EPA 8020 (BTEX)	ND 0.64 0.0451 0.0519	Inside Refinery	-Similar pattern to MW-205 without indications of gasoline
MW-201	ASTM 2887 Mod. EPA 8015 EPA 8010 EPA 8020 (BTEX)	ND 9 0.3178 0.696	Inside Refinery	-Mixture of gasoline (absent o-xylene) and other petroleum compounds
MW-504	ASTM 2887 Mod. EPA 8015 EPA 8010 EPA 8020 (BTEX)	36.9 99 0.0305 6.83	Inside Refinery	-Typical gasoline pattern -Diesel portions may be present to C13
MVV-202	ASTM 2887 Mod. EPA 8015 EPA 8010 EPA 8020 (BTEX)	ND 6.5 0.0195 0.476	Inside Refinery	-Similar pattern to those of MW-201 and MW-504 -Mixture of gasoline and other compounds -Low o-xylene and toluene concentrations
MW-103	ASTM 2887 Mod. EPA 8015 EPA 8010 EPA 8020 (BTEX)	ND 4.1 0.0043 0.4244	Inside Refinery	-No discernible pattern -Four individual compounds present in the volatile range

63-01\2TABLES.XLS,3-5

Table 3-5. Chromatogram Assessments of Groundwater Samples from Powerine Wells. (prepared by Powerine)

Sum of Concentrations

Well Number	Analytical Method	(mg/L)	Proximity to Refinery	Chromatogram Assessment for All Analytical Procedures
7101111001	, many mount mounts a	(g)	T TOXITING TO TECHNICAL	Official of the first of the fi
MW-503	ASTM 2887	ND	Inside Refinery	-Similar pattern to those of MW-201 and MW-504
	Mod. EPA 8015	8.2		-Distinct gasoline pattern
	EPA 8010	0.2674		
	EPA 8020 (BTEX)	0.809		
MW-206	ASTM 2887	ND	Inside Refinery	-No discernible pattern
	Mod. EPA 8015	12		-Broad range material
	EPA 8010	ND		-Some light end hydrocarbons exist
	EPA 8020 (BTEX)	0.258		
MW-502	ASTM 2887	41.1	Inside Refinery	-Substantially weathered gasoline pattern
	Mod. EPA 8015	220		-Toluene concentration approx. = 2%, which is less than the 7%
	EPA 8010	0.0150		concentration in fresh gasoline
	EPA 8020 (BTEX)	19.65		
MW-501	ASTM 2887	19.9	Inside Refinery	-Similar pattern to those of MW-201, MW-202, MW-503, and MW-504
	Mod. EPA 8015	69		-Distinct gasoline pattern with minimal weathering
	EPA 8010	0.0203		·
	EPA 8020 (BTEX)	4.78		
MW-600	ASTM 2887	412	Immediately Down-	-Distinct gasoline pattern with minimal weathering
	Mod. EPA 8015	3500	gradient of Refinery	•
	EPA 8010	0.005	•	
	EPA 8020 (BTEX)	182		
MW-601	ASTM 2887	1110	Immediately Down-	-Distinct gasoline pattern with minimal weathering
	Mod. EPA 8015	3500	gradient of Refinery	-Some diesel range hydrocarbons (approximately 8%) are present
	EPA 8010	0.0096	- ,	
	EPA 8020 (BTEX)	265	,	
	, ,			

Table 3-5. Chromatogram Assessments of Groundwater Samples from Powerine Wells. (prepared by Powerine)

Sum of Concentrations

Well Number	Analytical Method	(mg/L)	Proximity to Refinery	Chromatogram Assessment for All Analytical Procedures
MW-604	ASTM 2887	ND	Downgradient	-No discernible pattern
	Mod. EPA 8015	1.9		-Not gasoline in nature
	EPA 8010	0.0034		•
	EPA 8020 (BTEX)	0.1921		
MW-603	ASTM 2887	ND	West and	-No discernible pattern
	Mod. EPA 8015	ND(0.5)	Downgradient	-Benzene and toluene are approximately 50% of aromatics
	EPA 8010	0.1452		
	EPA 8020 (BTEX)	0.0063		
MW-607	ASTM 2887	31	Downgradient	-Not gasoline in nature
	Mod. EPA 8015	1.2	-	-Highest peaks at C26-C28
	EPA 8010	0.0011		
	EPA 8020 (BTEX)	0.0476		
MW-605	ASTM 2887	ND	West and	-No distinct pattern probably due to low concentrations
	Mod. EPA 8015	ND(1)	Downgradient	
	EPA 8010	0.0381	-	
	EPA 8020 (BTEX)	0.0149		
MW-606	ASTM 2887	ND	Downgradient	-No discernible pattern due to non-detectable concentrations
	Mod. EPA 8015	ND(0.5)	-	·
	EPA 8010	0.0074		
	EPA 8020 (BTEX)	ND		

Notes:

ND: Not detected. Detection limits listed in Tables 3-3 and 3-4.

^{1.} Wells are listed from the northern-most well and extending southward. Wells located on the same east-west axis are listed beginning from the western-most direction and extending eastward.

^{2.} The abscence of distinct refined product patterns and the presence of broad range hydrocarbons may indicate background concentrations of crude oil in groundwater.

Table 3-6. Inorganic Compounds in Groundwater, Powerine Refinery, Santa Fe Springs, California.

Well	Date	Temperature (°C)	рН	Conductivity (µmhos/cm at 25°C)	Dissolved Lead (mg/L)
MW-101*	12/12/95	20	7.87	1743	ND(0.050)
MW-103*	12/12/95	24	6.69	1742	ND(0.050)
MW-104*	12/12/95	23	7.11	3016	ND(0.050)
MW-105	1/10/96	27	6.78	2397	0.005
MW-106	1/10/96	25	6.95	2200	0.010
MW-107	1/10/96	26	6.97	2655	ND(0.005)
MW-201*	12/12/95	20	7.09	803	ND(0.050)
MW-202*	12/12/95	22	6.26	1018	ND(0.050)
MW-203*	12/12/95	22		2437	ND(0.050)
MW-204*	12/12/95	24	7.02	1887	ND(0.050)
MW-205*	12/12/95	21	9.21	1774	ND(0.050)
MW-206*	12/12/95	20	9.02	1302	ND(0.050)
MW-501*	12/12/95	21	7.35	1440	ND(0.050)
MW-502*	12/12/95	22	7.06	1909	ND(0.050)
MW-503*	12/12/95				ND(0.050)
MW-504*	12/12/95	22	7.21	1680	ND(0.050)
MW-600*	12/12/95	21	7.20	1424	0.33
MW-601*	12/12/95				0.17
MW-603	1/10/96	22	6.72	1780	ND(0.005)
MW-604	1/10/96	19	6.82	1136	ND(0.005)
MW-605	1/10/96	20	7.02	1701	ND(0.005)
MW-606	1/10/96	19	7.27	1224	ND(0.005)
MW-607	1/10/96	19	6.95	1835	ND(0.005)
Equipment blank*	12/12/95				ND(0.005)
Equipment blank	1/10/96				ND(0.005)

^{*:} Sampled by Miller Brooks

^{--:} Data not available

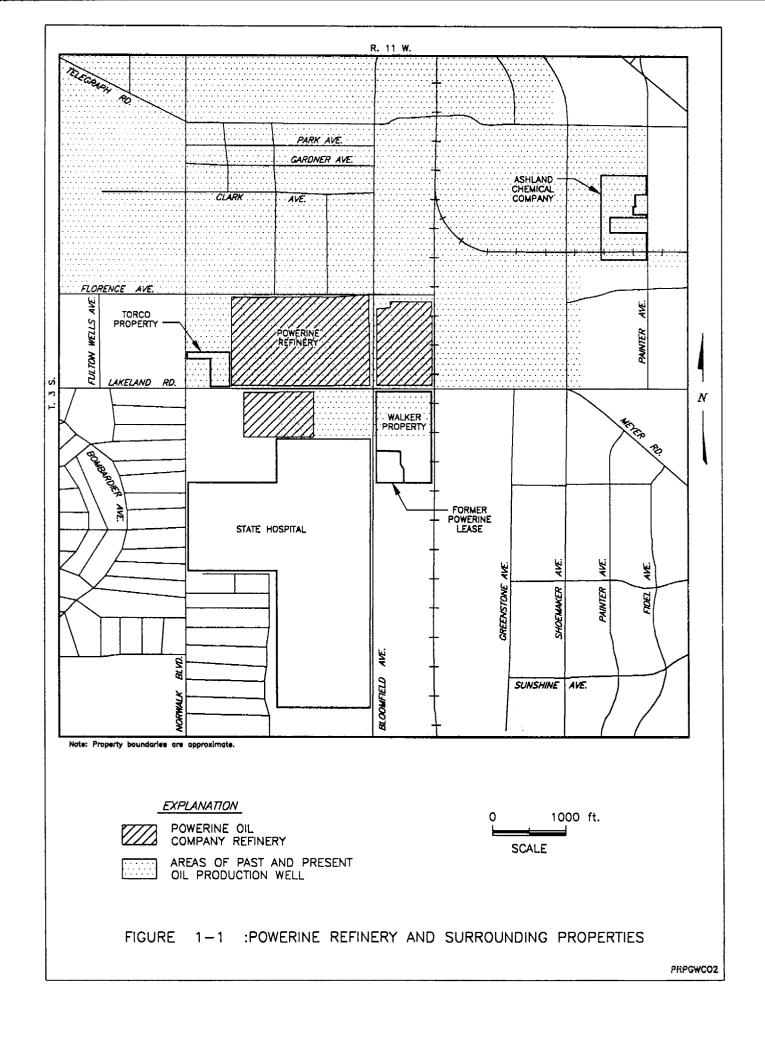
Table 4-1. Torco Property Soil Analytical Data. (prepared by Powerine)

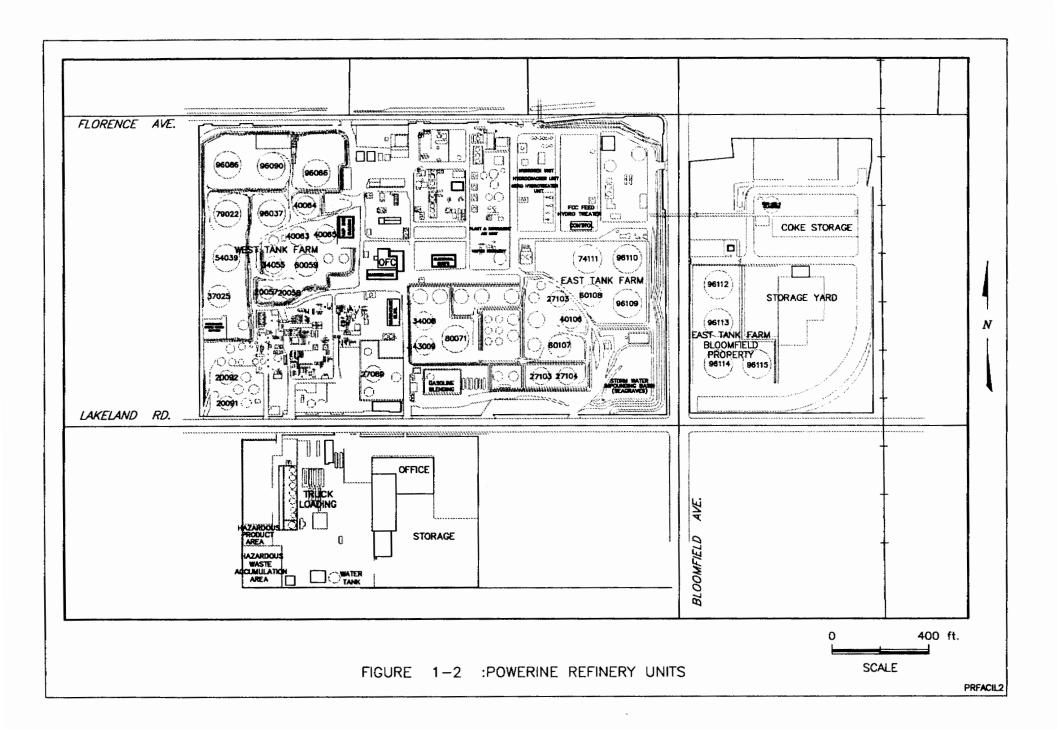
Sample Designation	TPH via 8015(d) (mg/kg)	TRPH via 418.1 (mg/kg)	Hydrcarbons > C30 (mg/kg)	∆% (ткрн-трнуткрн
S-17-1	7158	1345	-5813	-432%
S-4.5-SE13(1ST)	2166	3562	1396	39%
S-4.5-SE13(2ND)	2048	2309	261	11%
S-19-11*	10	64	54	84%
S-13-SUMP	944	1038	94	9%
S-21-12	5877	11257	5380	48%
S-12-13	5588	14337	8749	61%
S-12-15	76	3264	3188	98%
S-21-12	539	16995	16456	97%
S-8-16B*	10	15	5	33%
S-16-17*	10	60	50	83%
S-11-21	890	2444	1554	64%
S-12-25*	10	34	24	71%
S-6-E35	1265	2875	1610	56%
S-7-E35A	7865	9936	2071	21%
S-8-E42	1355	3080	1725	56%
S-8-E42A	20	46	26	57%
S-12-E46	2829	4630	1801	39%
S-3-E58**	5	34	29	85%
S-8-E59	13714	18853	5139	27%
S-11-E63	5255	18100	12845	71%
S-15-B51	12800	14600	1800	12%
S-30-B51***	1	32	31	97%
S-40-B51*	10	15	5	33%
S-20-B52***	1	13	12	92%
S-70-B52***	1	14	13	93%
S-80-B52*	10	16	6	38%
S-60-B53***	1	53	52	98%
S-70-B53***	1	15	14	93%
S-80-B53*	10	16	6	38%
S-20-B54	3000	39500	36500	92%
S-40-B54***	1	515	514	100%
S-75-B54***	1	36	35	97%
S-85-B54***	1	17	16	94%
S-5-B55	NA	4930	NA	NA
S-20-B55	10567	19600	9033	46%
S-45-B55***	1	49	48	98%
S-75-B55***	1	50	49	98%
S-85-B55***	1	23	22	96%
S-5-B56	NA	11100	NA	NA
S-20-B56***	1	22	21	95%
S-50-B56	NA	10	NA	NA
S-75-B56***	1	38	37	97%
S-5-B57	NA	18900	NA	NA
S-15-B57***	1	20	19	95%
S-40-B57***	1	25	24	96%

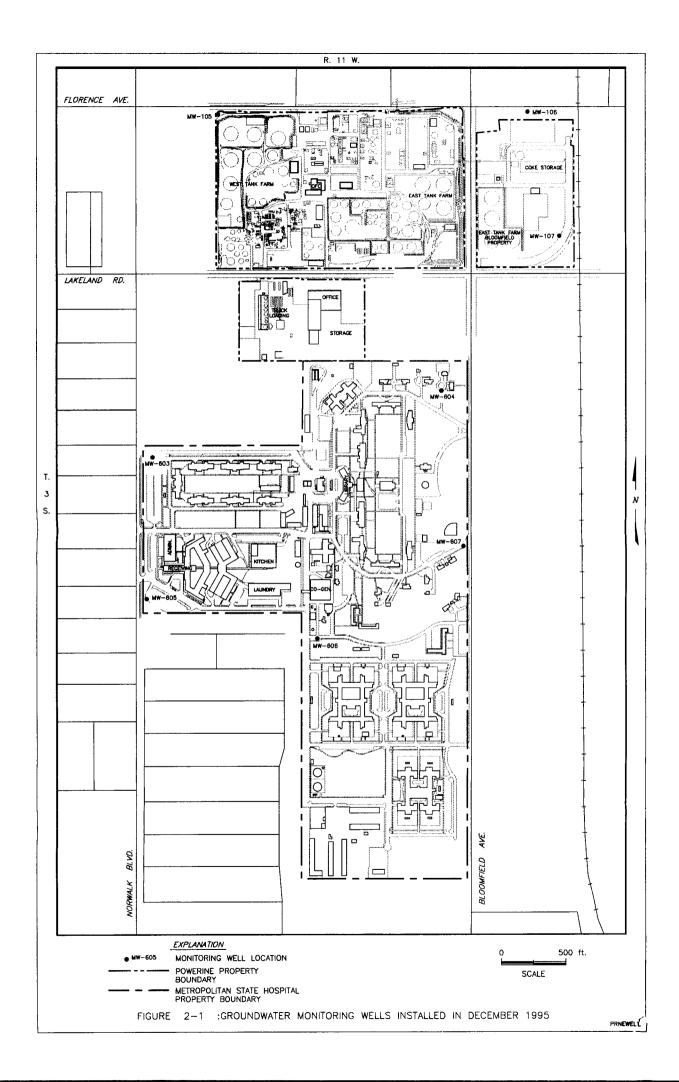
Table 4-1. Torco Property Soil Analytical Data. (prepared by Powerine)

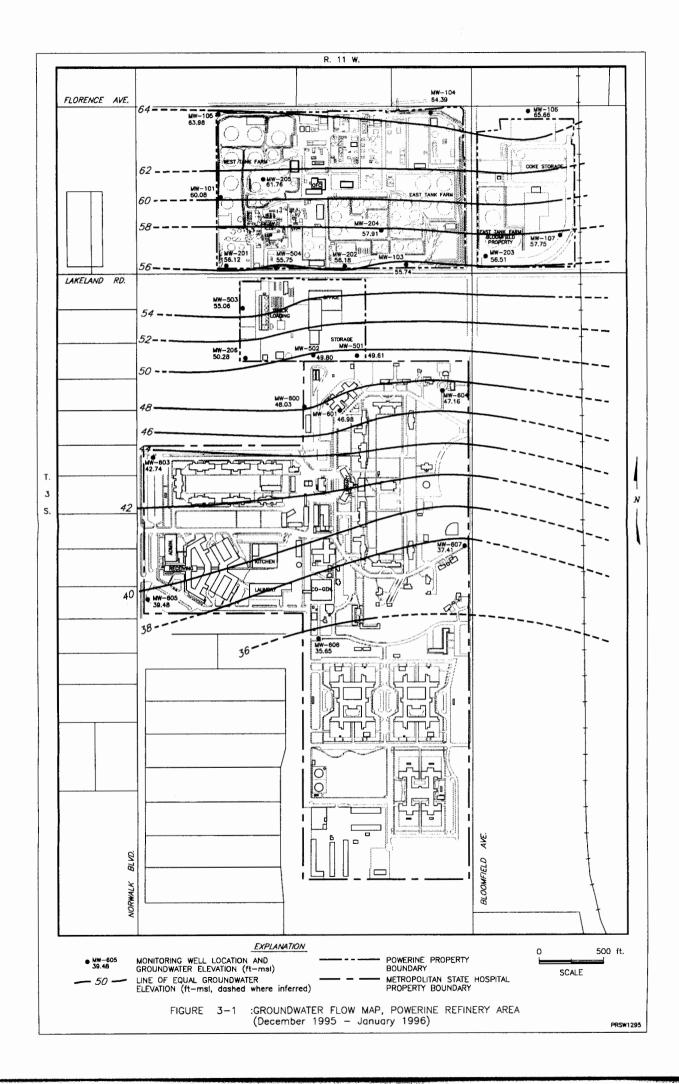
Sample Designation	TPH via 8015(d) (mg/kg)	TRPH via 418.1 (mg/kg)	Hydrcarbons > C30 (mg/kg)	Δ% (TRPH-TPHyTRPH
S-50-B57***	1	20	19	95%
S-60-B57***	1	19	18	95%
S-10-B58	597	388	-209	-54%
S-18-B58	1320	2070	750	36%
S-10-B59	19	164	145	88%
S-18-B59	86	704	618	88%
S-10-B60*	10	50	40	80%
S-14-B60*	10	17	7	41%
S-10-B61	39	69	30	43%
S-15-B61*	10	16	6	38%
umber of Sample Points	52	56		
Mean	1657	4061	2045	56% (TRPH= 2.23TPH)
Standard Deviation	3316.0	7655.9	5990.5	77%

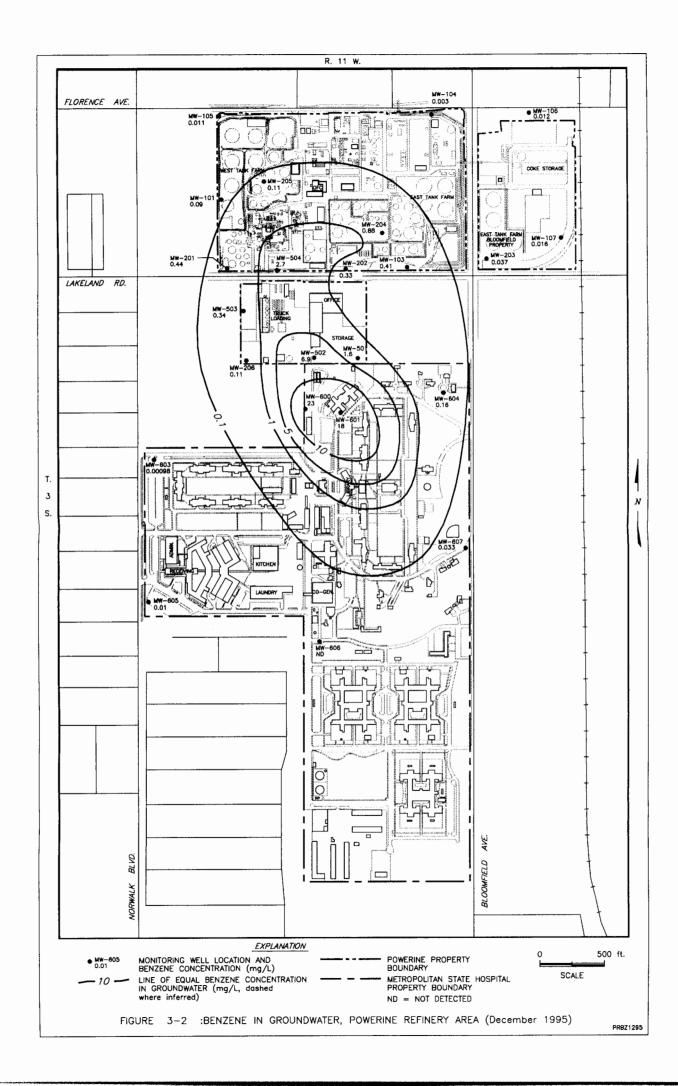
Sample Designation: S-sample depth-sample location

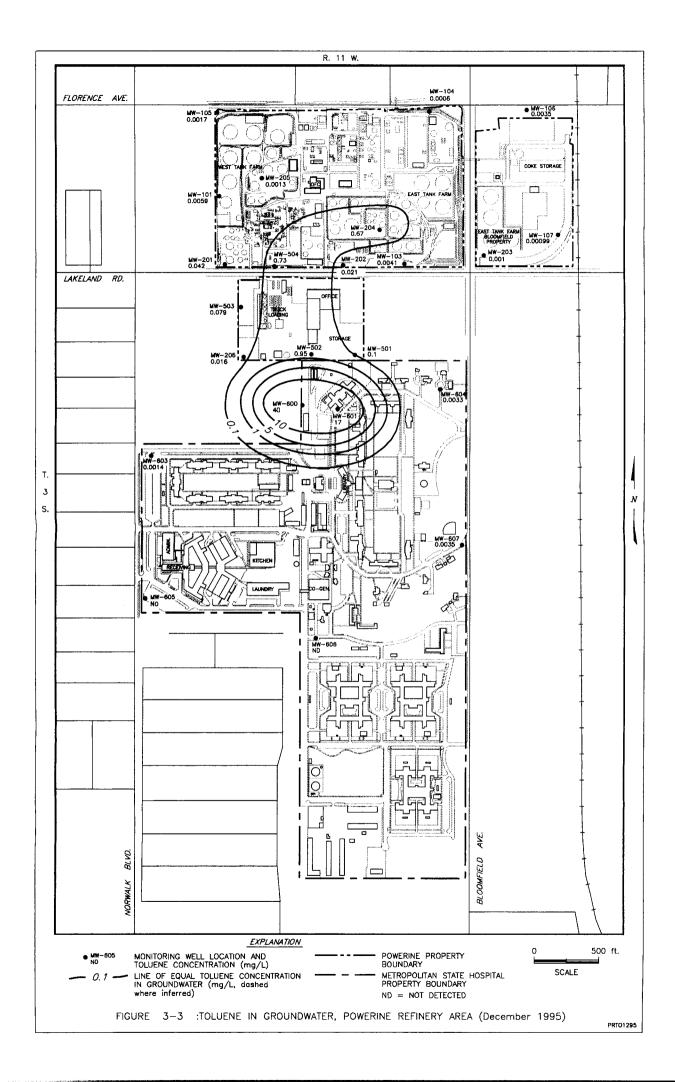

NA=Data not available

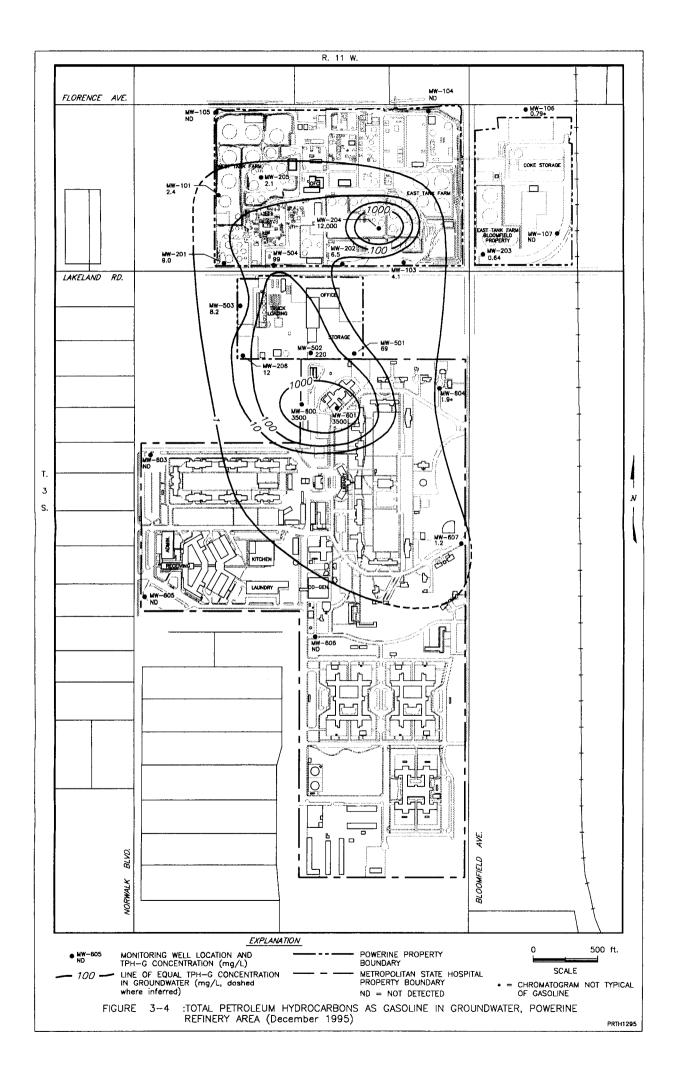

S-4.5 -SE13A (1st) same as SE-4.5-SE13A , SE-4.5-SE13A has been deleted

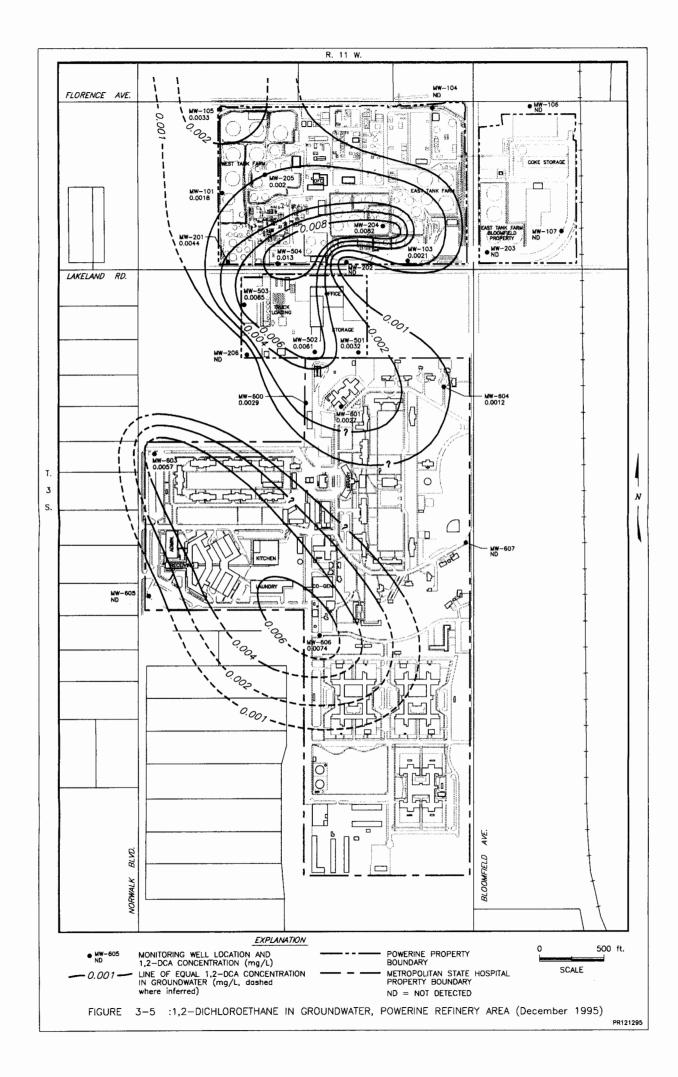

^{* =} Result ND<10 mg/kg

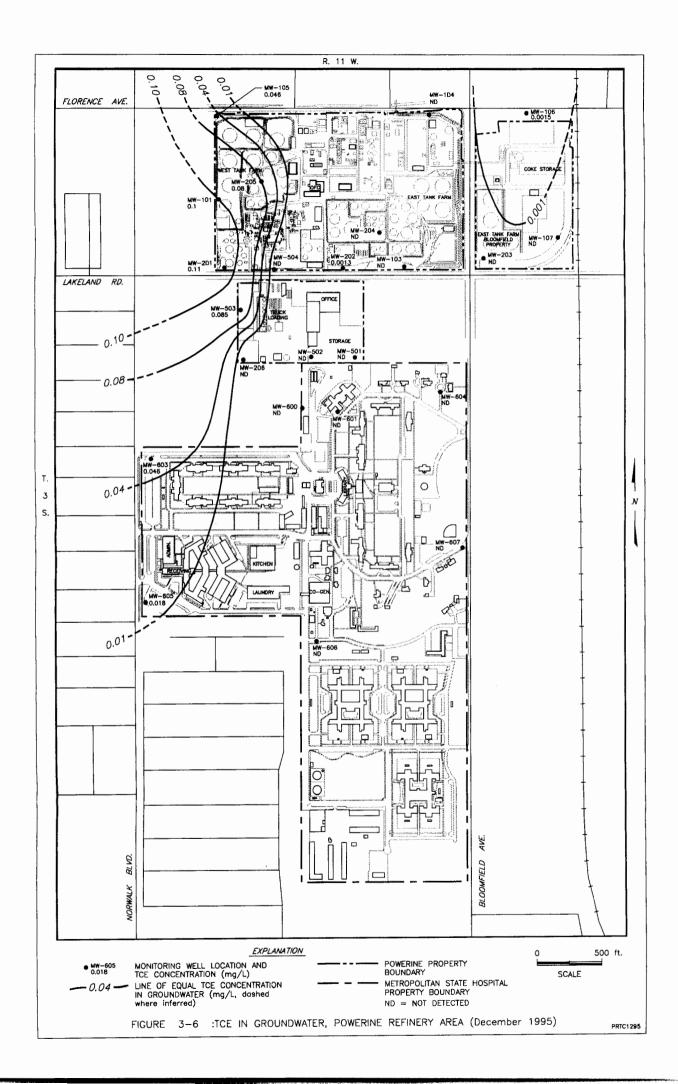

^{** =} Result ND<5 mg/kg

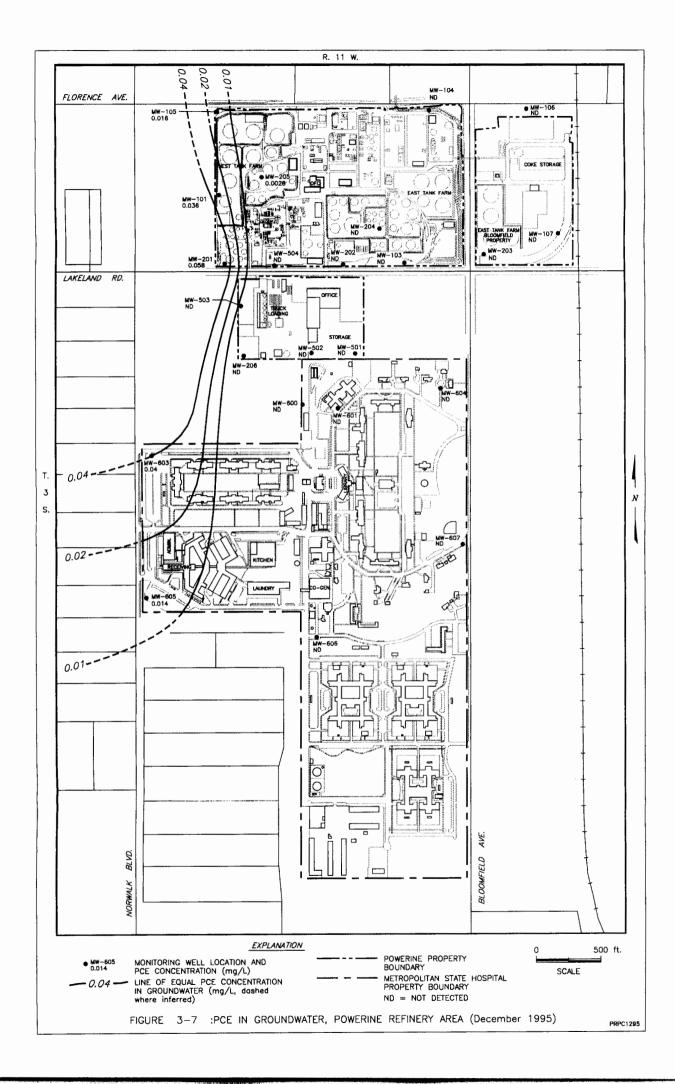

^{*** =} Result ND<1 mg/kg

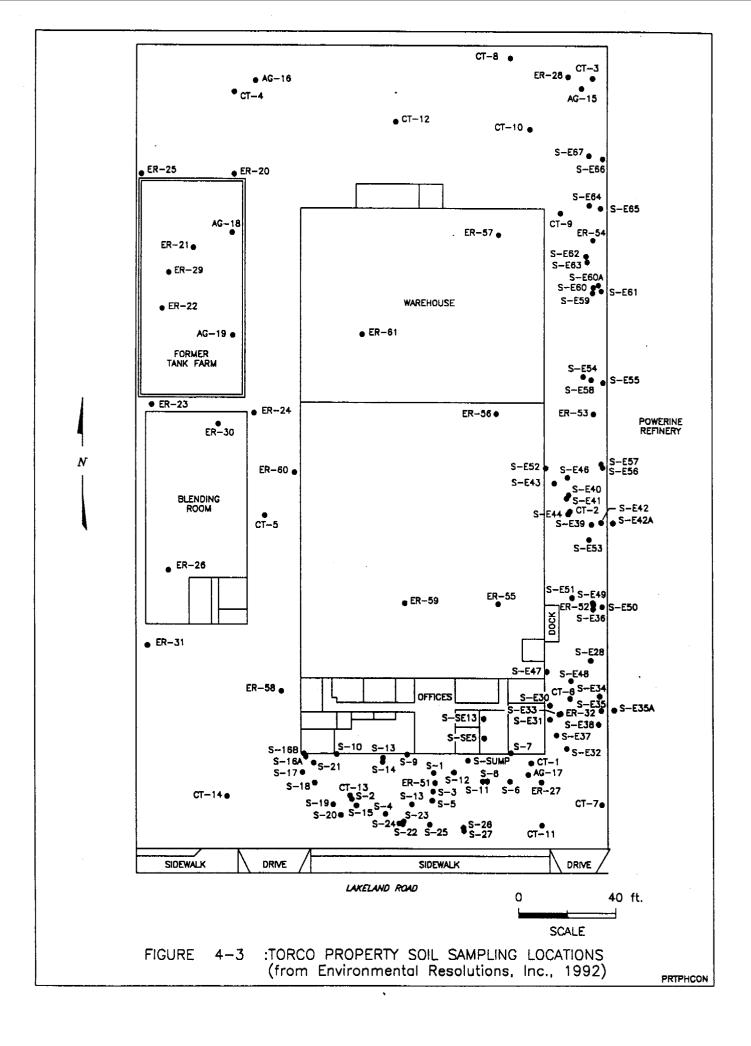












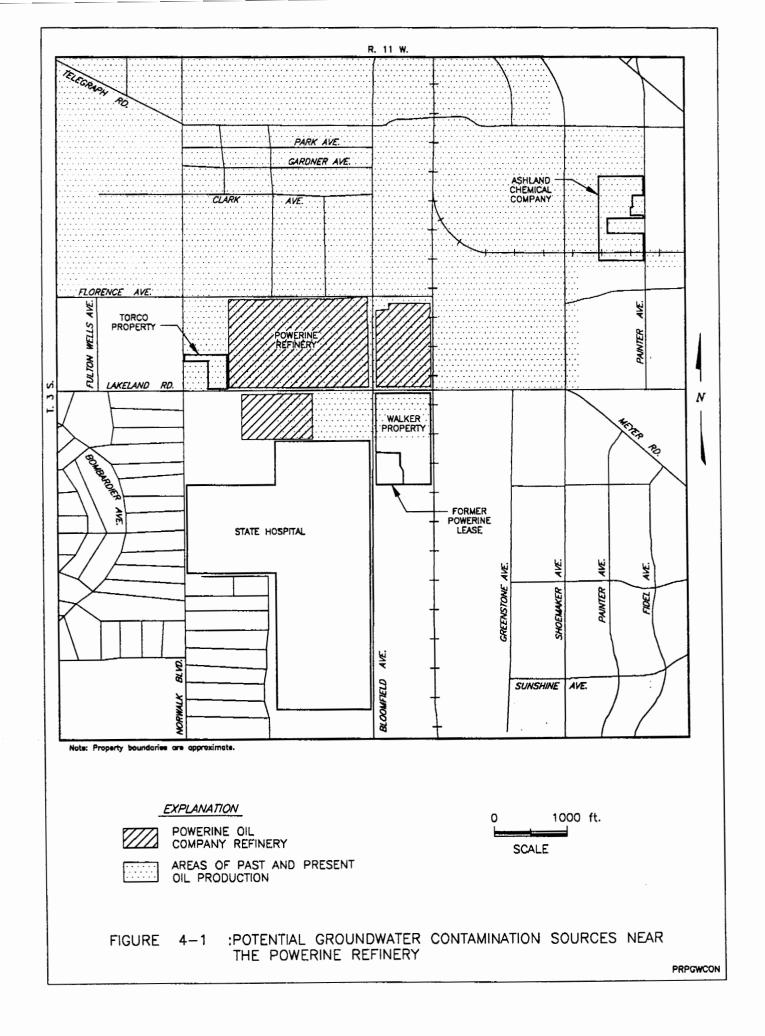


FIGURE 4-2 1927 TOPOGRAPHIC MAP SHOWING OIL PRODUCTION AND DISPOSAL NEAR THE POWERINE REFINERY

topographic map

SHOWING

DIRECTION OF THE SURFACE RUNOFF AND OIL SOAKED AREAS

IN RELATION TO THE

NORWALK STATE HOSPITAL SITE

J. E. ROCKHOLD

COUNTY SURVEYOR

County Surveyors Map Nº 8930 Surveyed May 1927

PLANE TABLE

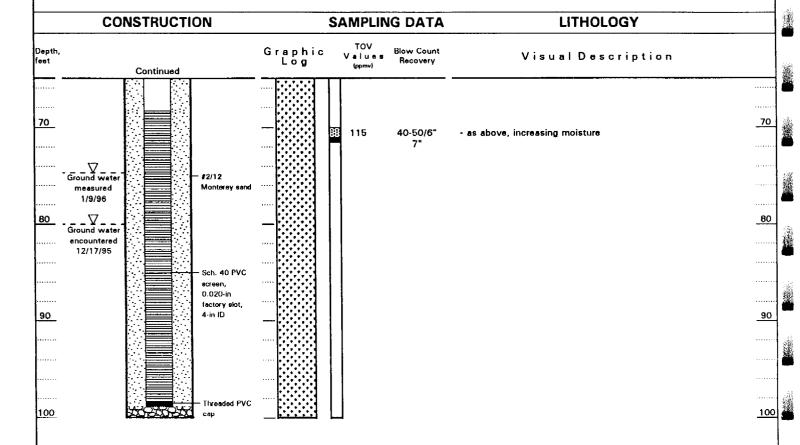
SCALE : 1"=200"

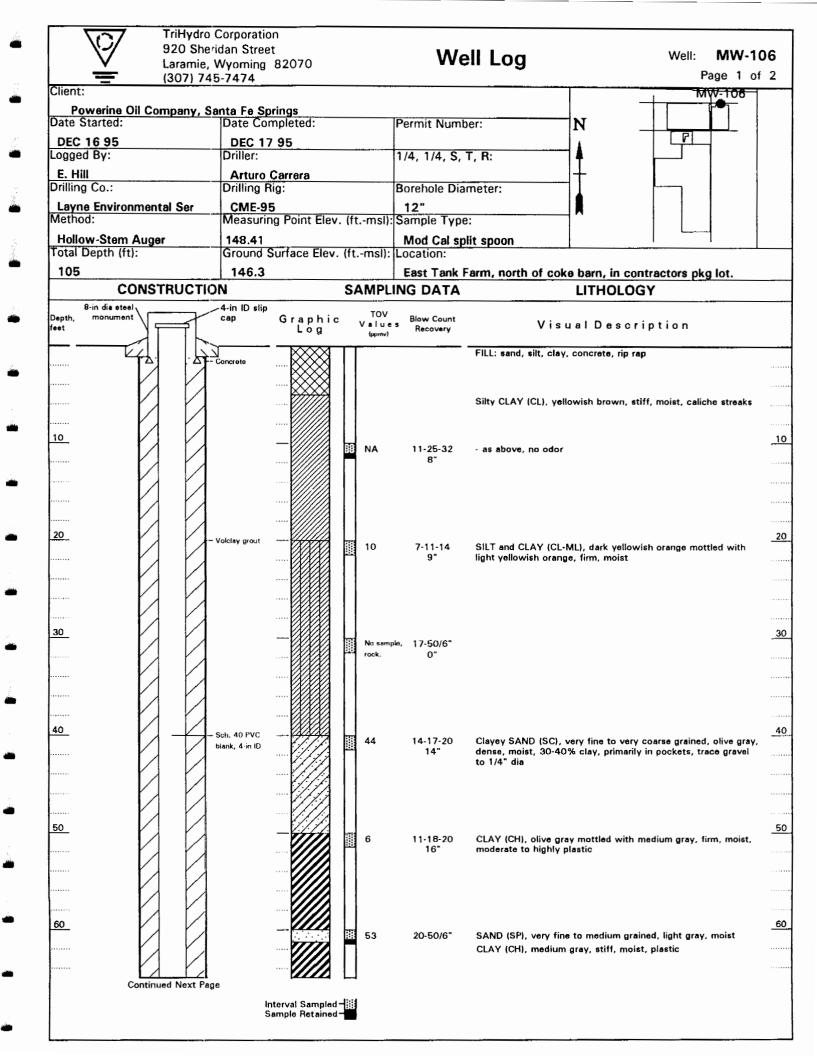
Norwalk and Puente Mills Rd. changed to Norwalk Blvd. 0:49-105

<u>=</u>	9: L a	20 Sherid	Corporation dan Stree Vyoming G-7474	et	0			We	ll Log	Well: MW Page 1	-105 of 2
Client: Powerine Contact Started:	Oil Comp	oany, Sa	Date Co	mplete	d:			Permit Numb	er:	N MW-105	
DEC 17 95 Logged By: Driller:								1/4, 1/4, S,	T, R:		
E. Hill Drilling Co.:	rturo Carrera lling Rig:				Borehole Dia	meter:					
Layne Environ Method:	5 ng Poin	t Elev	. (ft	msl):	12" Sample Type	:	⊣				
Hollow-Stem Total Depth (ft	138.63	Surface	Flov	If+	-mell:	Mod Cal sp Location:	lit spoon				
100	,.		137.1	Surrace	Liev	. (11.	11151/.		of property, outsi	de tank farm dikes	
	ONSTR	UCTIO	4	-		S	AMPLI	NG DATA	or proporty, outo	LITHOLOGY	· • ·
8-in dia stee Depth, monument feet			4-in ID slip cap	Gra	phio og	:	TOV Value (ppmv)	Blow Count Recovery	Vis	ual Description	
	74	77.7	oncrete			П					
	\square										
	\mathbf{R}										
10_											
10				-		88	0	5-6-7 9"		nedium yellowish brown, firm, moist, low he specks, minor manganese staining	
	И							-		, , , , , , , , , , , , , , , , , , , ,	
						Ш					*****
		\mathcal{L}									******
20		-v	olclay grout	-			0	7-20-22 13"	- as above, grading		_20
								13	Silty SAND (ML), ve grained, non-plastic	ery fine to fine grained, trace medium	
	\mathcal{L}										
30							5	13-16-20		ayish brown, firm to stiff, moist, moderat	
		И						18"	gray and light orang	ice angular gravel to 1" dia, mottled with ge	ı
	И	И									
40	1 /2 ·	1 /1	ich. 40 PVC lank, 4-in ID	///			3	17-25-29		g to gray with lesser orange mottling, sti	iff, 40
						П		15"	slight hydrocarbon o	odor	••••••

50				<u>-///</u>			20	17-29-15/6"	SAND (SW), very fir	ne to very coarse grained, light gray, ver	<u>50</u> Y
								16"	dense, moist		

60		$\langle \lambda \rangle$					70	30-50/6"	· as above, trace gr	avel to 1/2" dia	60
	\bowtie	L L L	lentanite Jellets					8"			
	Continued	Next Page		···· <u>:::</u>	:::: :	Ц					
			li	nterval Sample Re	ampled etained	-					

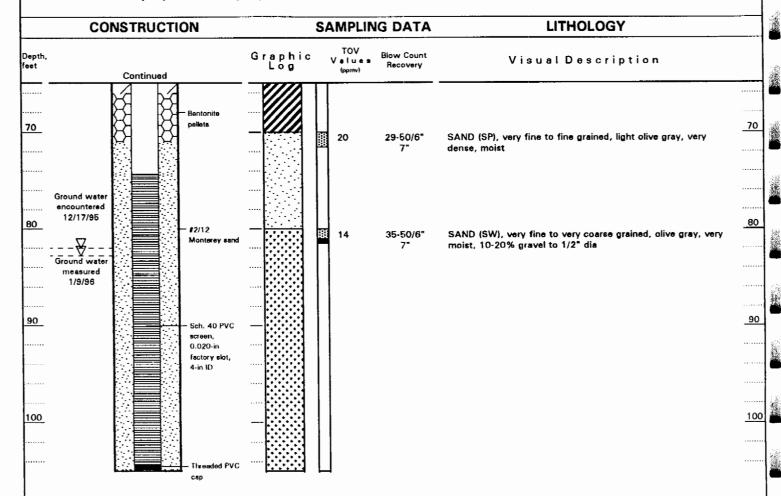

Well Log


Well:

MW-105

Page 2 of 2

Client:


Well Log

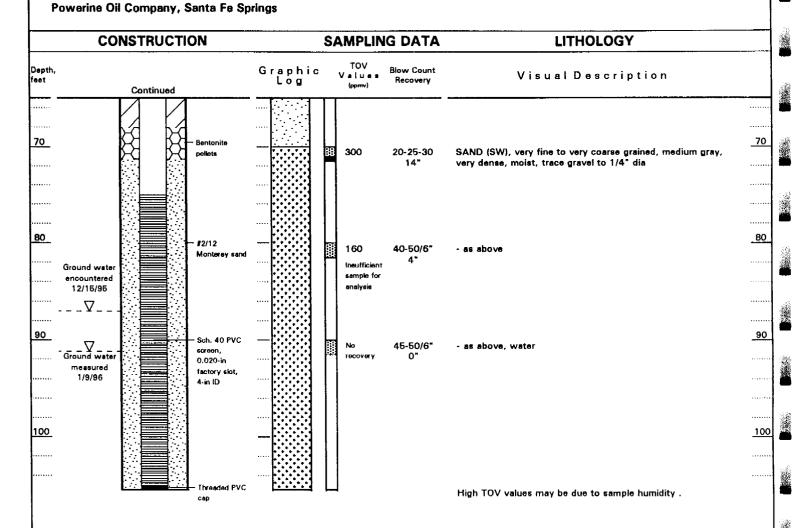
Well:

MW-106

Page 2 of 2

Client:

Client:	. La		dan Street Vyoming -7474				We	ll Log	Well: MW-10 Page 1 of	_
	e Oil Com	pany, Sar	nta Fe Sp Date Con	rings	<u> </u>	₁	Permit Numb	er: N	MW-107	
DEC 15 95			DEC 16	-					P	
Logged By:			Driller:		-		1/4, 1/4, S,	T, R:		
E. Hill			Arturo (5			
Drilling Co.: Drilling Rig:							Borehole Dia	meter:		
Layne Envi Method:	ronmental	CME-95 Measuring Point Elev. (ftmsl): S				12" Sample Type	·: ^			
Hollow-Ste	m Auger		148.93	148.93				lit spoon		
Total Depth	(ft):			Surface Elev	. (ft.	msl):				
105.5	CONOTE	U O TIGU	146.4			A 84 DI 1		f East Tank Farm	00V	
8-in dia :	CONSTR				5/	AMPLI	NG DATA	LITHOL	OGY	
Depth, monur feet			4-in ID slip cap	Graphi Log	С	TOV Value: (ppmv)	Blow Count Recovery	Visual Des	cription	
		[2]		-6000	П			GRAVEL (GW), to 2" dia, light gr	ay, subangular to subrounded,	
•••••			oncrete					road base Silty CLAY (CL), dark olive gray,	moist	
		\mathbf{Z}								
				<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>						
10							•			
				_/////	88	130	8-6-8 18"	 as above, medium brown, 20-3 spots, grading to: 	0% sand, many small caliche	
		И						SAND (SW), very fine to coarse	grained, light brown, moist	
•••••										
20_		\mathcal{L}_{v}	oklay grout							_
			, •			> 2000	3-4-6 18"	Sandy, silty CLAY (CL), medium plasticity, 20-30% very fine to m		
								grading to: Clayey SILT(ML), olive gray with	dark orange mottling, stiff,	
								moist, 10-20% very fine to fine (grained sand	
	K									
30	$\mathcal{L}_{\mathcal{L}}$			-		> 2000	15-17-29	SAND (SW), very fine to very co.	arse grained, light olive gray,	-
	\mathcal{L}	\mathcal{L}			П		12"	dense, moist		٠.
	\mathbf{r}									
	Y/									
40					Ш					
<u>40</u>		1 /	ich. 40 PVC Iank, 4-in ID	-		600	20-50/6" 9"	- as above, very dense, trace gra	vel to 1/2" dia	_
							3			
•••••	И									
•••••	И									,,
<u>50</u>	И									_
	И					58	42-50/6" 9"	SAND (SP), fine to medium grain orange, very dense, moist, dark		
.,										
60_				_		> 2000	40-50/6"	- as above, medium gray, very m	oist, no odor	-
					ш	2000	8"	as anoto, montain High, soly in		
······	V_{λ}									
	Continue				_	-				


Well Log

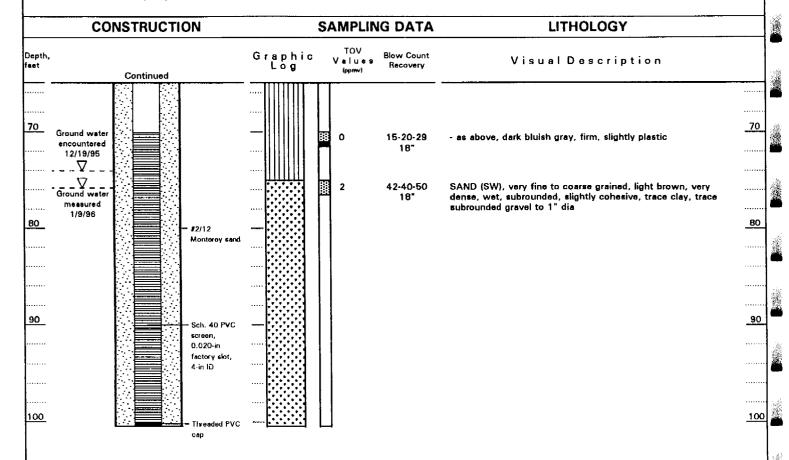
Well:

MW-107

Page 2 of 2

Client:

	<u> </u>	9 L	20 Sheri	Corporation dan Stree Wyoming 5-7474	t			We	ell Log	Well: MW-60 Page 1 of	
Clien										1,	
Date	Powerine Oi Started:	I Com	npany, Sa	nta Fe Sp Date Co	orings mpleted:			Permit Numb	per: N		
DEC 19 95 DEC 19 9					-				1	MW-603	
Logged By: Driller:							1/4, 1/4, S, T, R:				
	E. Hill Arturo C Drilling Co.: Drilling Ri						Borehole Dia				
1	Layne Environmental Ser CME-95			_				12"			
Method: Measurii				ng Point Elev	. (f1	imsl):	Sample Type:				
Hol	Hollow-Stem Auger 118.54 Total Depth (ft): Ground 5				Surface Elev	- (f t	-mell-	Mod Cal sp			
1	100.5 Ground S				Juliace Elev	, ,,,	. 111317.	1	Hosp, pkg lot at 2nd and N	lorwalk	
	CONSTRUCTION					S	AMPL	ING DATA	LITHO		
D41	12-in dia,			4-in ID	C 1 ' -		TOV	DI 0 .			
Depth,	round, traffic rated vault	$\overline{}$		expansion cap	Graphic Log	;	Value (ppmv)	Blow Count Recovery	Visual Des	cription	
\vdash		[] _F		Concrete		П			Silty CLAY (CL), brown, firm, m	oist, moderately plastic, trace	
					····////	П			sand		******
					····////						
10		И									10
		И				#	2.5	24-50/6" 9"	 as above, dark yellowish orang 20-30% 	e, stiff, increasing sand to	
ļ											
		\mathbb{Z}				П					
		V_{\perp}									
20		M	/ _,	Volclay grout	-////	133	40	15-20-29	- as above, graviah brows mottl	ad with around decreasing	20
		\mathbb{Z}			·····	40	40	18"	 as above, grayish brown mottled with orange, decreasing sand to trace 		
ļ		V_{\perp}									
		\mathbf{r}									
		\mathbf{r}									
30					-(////		Error in				_30
							count,				
							samples off 5 ft O	16-20-28	Clayey SAND (SC), very fine to	medium grained dark	
		\square						15"	yellowish orange with dark oran with some silty clay lenses		
40		И	Δ	Sch. 4 0 FVC					With Bottle Birty Oray terraps		40
		\square		blank, 4-in ID							
ļ											
		M					0	15-50/6"	SAND (SP), very fine to medium		
ļ								12"	light brown with dark orange me	ottling, very dense, moist	,,
50		V_{\perp}			_						50
		V_{\perp}									
		\mathbf{r}									
ļ		\mathbf{r}					0	30-50/6" 12"	- as above, light olive gray		
		I/I									
60			Ka				7	15-24-29	Clayey SILT (ML), light brown w		_60
		区		Bentonite				14"	moist, 20-30% very fine grained	a sand	,
	C		d Next Page	pellots e	[[]]]]]]	L					. 111111
	· ·	ue	a make rage		nterval Sampled	488	1				
					sample Retained						



Well Log

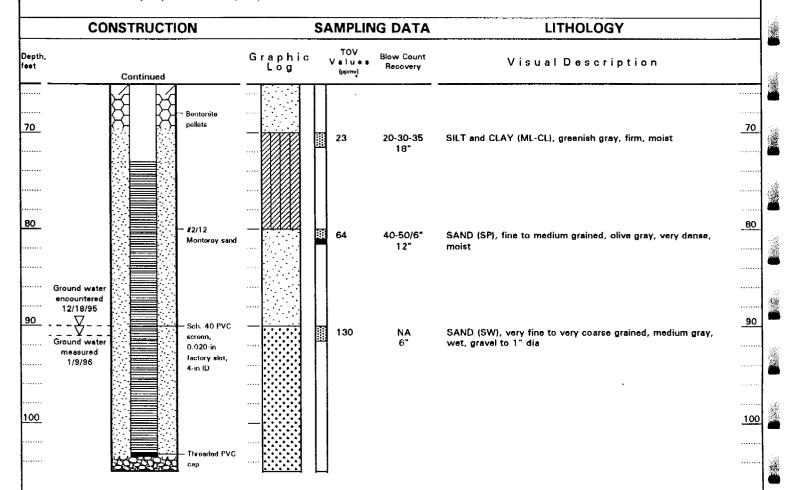
Well: **MW-603**

Page 2 of 2

Client:

<u>Ş</u>	/ 92 La	20 Sheri	Corporation dan Street Vyoming 1-7474	t			We	ll Log		Well: MW-60 Page 1 of	
Client:	a Oil Came	anu Ca	nta Ea Sn	ringe						1 1 	
Date Started	e Oil Comp	oany, sa	Date Con	npleted:			Permit Numb	er:	N		
DEC 18 95	5		DEC 18	95					1	MW-604	
Logged By:			Driller:				1/4, 1/4, S, T	Γ, R:	1		
	E. Hill Arturo Carrera						Borehole Diar	motori	 †		
1	Drilling Co.: Drilling Rig: Layne Environmental Ser CME-95						12"	neter.	1		
Method:	ironmentai	CME-95 Measurin	g Point Elev	. (ft.	-msl):	Sample Type		∤ ^			
Hollow-Ste	em Auger		138.16	-			Mod Cal spl				
Total Depth	urface Elev.	(ft	ms!):	Location:							
105			137.1				A	Hosp, Governor's			
	CONSTR	UCTIO	N		SA	MPL	ING DATA		LITHO	LOGY	
1 2-in Depth, round, tr feet rated v	raffic \		4-in ID expansion cap	Graphic Log		TOV /alue (ppmv)	Blow Count Recovery	Vis	ual Des	cription	
		弘2	Concrete		П			Silty CLAY (CL), dan	k yellowish	orange, firm, moist,	
				·····////				moderately plastic			
				·····////							
				····· <i>\\\\\</i>							
10											_10
10		IJ		-/////	8	0	20-50/6"	-	gray with I	neavy dark orange mottling,	
ļ	I			···· <i>/////</i>	П		8"	very stiff, damp			
	I	IA		····· <i>\</i> /////							
	\mathbf{r}										
	IA			···· <i>\\\\\\</i>							
20	\mathbf{r}	//·	Voiclay grout	-1444		0	29-50/5"			ed sand, light yellowish orange	20
	\mathbf{r}	$^{\prime}$			П		12"	with dark orange st	reaks, very	dense, moist, slightly plastic	
	Y.	\mathbf{r}									
	\mathcal{L}										
	\mathbf{r}	\mathbf{r}									
30	\mathbf{r}	\mathbf{r}		-		0	30-50/6"	SAND (SW), very fi	ne to very c	oarse grained, light brown, very	_30
	$ V_{\lambda}$				П		7"	dense, moist, 20%	gravel to 1/	4" dia	
ļ											

	$\mathbf{Y}_{\mathbf{A}}$										
40	\mathbf{r}	1 /1	Sch. 40 PVC			0	7-12-20	- as above, with ler	ses of silty	CLAY (CL), olive gray, soft to	_40
	\mathbf{r}		blank, 4-in ID	<i>!!!!!!</i>	H		8"	firm, very moist	·		
	\mathbf{Y}										
	$\mathcal{L}_{\mathcal{L}}$										
	V_{λ}										
50_				_[::::::]		15	19-20-25	SAND (SW), very fi	ne to verv r	oarse grained, olive gray with	_50
					H	, ,	12"	orange streaks, der		subrounded, 20-30% gravel to	
	V_{λ}							1" dia			
60	V_{λ}			_::::::		41	20-32-40	SAND ISPL fine to	medium ara	ined, medium gray, dense,	_60
						41	18"	moist	outuin gid	mas, meaning Brat, delive,	
	Continued	Next Pag	е		П						
				nterval Sampled Sample Retained							


Well Log

Well:

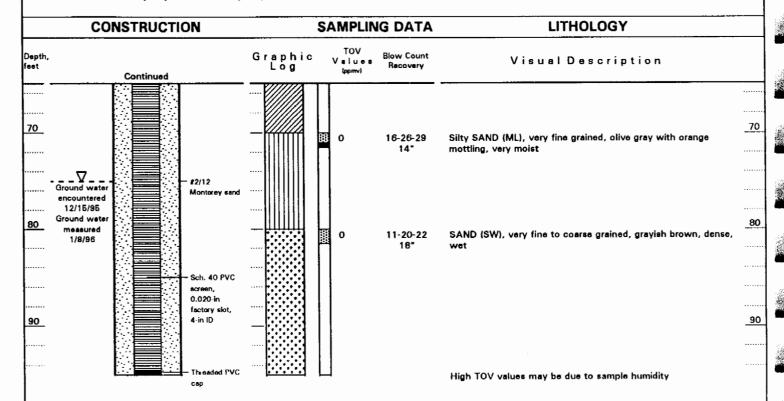
MW-604

Page 2 of 2

Client:

	<u> </u>	92 Lai	0 Sheri	Corporatio dan Stree Vyoming 5-7474	t			We	ell Log	Well: MW - Page 1	
Client	. =	,,,,	2777				-	5. H.C. H.			
Po	werine Oil	Comp	any, Sa	nta Fe Sp	rings			ID			
1	Started:			Date Cor	•			Permit Numb	er:	N P	
Logge	15 95 ed By:			DEC 15	95			1/4, 1/4, S,	T R·	┤ ▲	
E. Hi				Arturo	Carrera			174, 174, 0,	,,	MW 605	
	g Co.:			Drilling P				Borehole Dia	meter:		
Layn Metho	ne Environm od:	nental :	Ser	CME-9! Measurin	5 ng Point Ele	v. (ft	tmsi):	12" Sample Type):	- 	
Holle	ow-Stem A	uger		114.54				Mod Cal sp	lit spoon		
Total	Depth (ft):			Ground S	Surface Elev	/. (ft	msl):	Location:			•
95				115.1					Hosp, pkg lot at		
	COI	NSTR	UCTIO			S	AMPL	ING DATA	·	LITHOLOGY	
Depth, refeet	12-in dia, ound, traffic rated vault		_	4-in ID expansion cap	Graphi Log	С	TOV Value (ppmv)	Blow Count Recovery	Vis	ual Description	
\Box		<u>'</u>	777	Concrete							•
											7411111
					····////						*******
			I/I			Ш					•
10			I/I		···· <i>\</i> /////						10
<u>'</u>			I/I		-/////	88	> 200			llowish brown, moist, moderately plastic,	
	Ì							12"	few caliche spots, r	no detectable odor	
			I/I		···· <i>/////</i>						
			I/I		·····////						
			1/1		·····////						
20			Y_{F}	Voiclay grout			1700	14-22-25	SAND (SP), very fin	e to fine grained, trace coarse grained,	_20_
			\mathbf{Y}		****			12"	yellowish orange, v	ery dense, moist, still no odor	
			Y_{A}								
			\mathbf{Y}								
			$Y_{\mathcal{A}}$								
30			Y_{λ}		-		1500	19-27-32	-as above, grading	to:	30
ļ			Y_{λ}			1		10"			
ļ			Y_{λ}								
			Y_{λ}								
			Y_{λ}								
40		// -	1 /1	Sch. 40 PVC		188	> 200	0 15-28-34	SAND (SW) very fi	ne to very coarse grained, light yellowish	40
				blank, 4-in ID			200	18"		moist, 20-30% gravel to 1/2" dia	
50					_::::::	,,,,		00.00.10			50
							1100	20-30-40 18"	- as above, <10%	gravel	
									- minor perched wa	ter between 50 ft and 60 ft	
		A	\mathbb{A}								,,,,
60		\bowtie	₩ H	Bentonite							60
		\succ	\mathcal{X}	pellets		Ħ	> 200	00 12-17-25 18"		ht olive gray with dark orange streaks, st plastic, micaceous, few caliche streaks	tiff,
					·····////			10	moist, moderately t	Juano, Illicaccodo, ICM Calicilo elicaks	
	0-		Next Par	_		L	1				,,,,,,,,
	Co	nunuea	Next Page	t.	nterval Sample Sample Retains						

TriHydro Corporation 920 Sheridan Street Laramie, Wyoming 82070 (307) 745-7474


Well Log

Well:

MW-605 Page 2 of 2

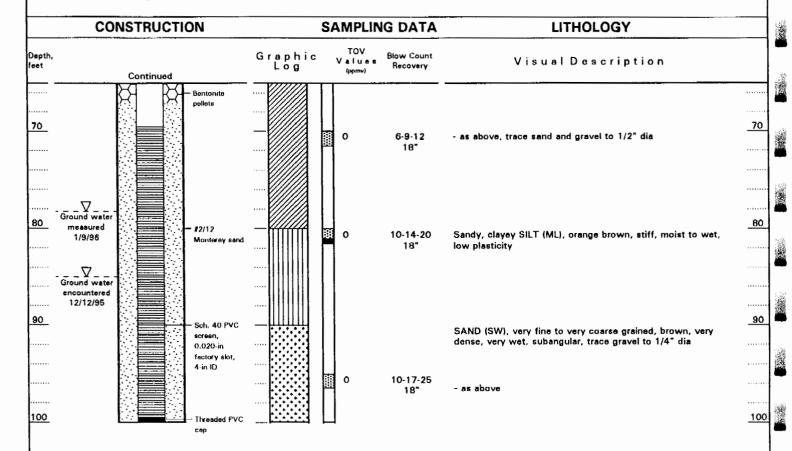
Client:

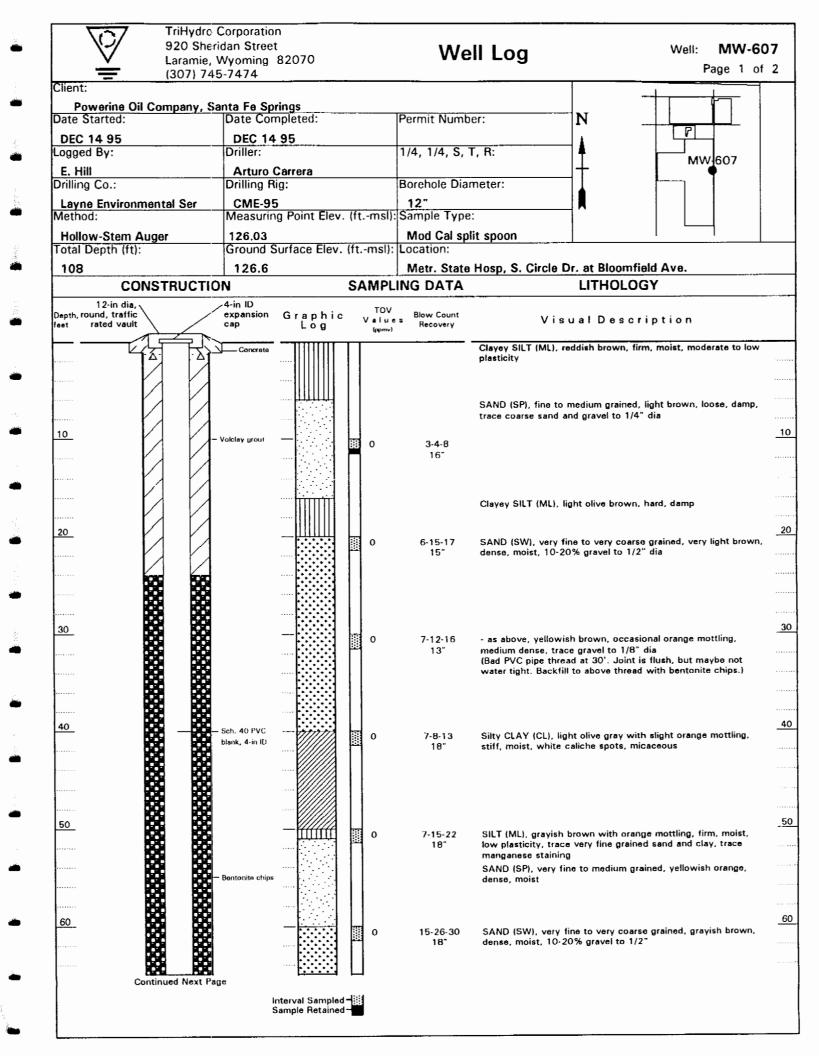
Powerine Oil Company, Santa Fe Springs

TriHydro C 920 Sherio Laramie, V (307) 745	dan Street Vyoming 82070	Well Log	Well: MW-606 Page 1 of 2
Client: Powerine Oil Company, Sar		Permit Number: N	
DEC 12 95	DEC 13 95 Driller:	1/4, 1/4, S, T, R:	
Logged By: E. Hill	Arturo Carrera	1/4, 1/4, 5, 1, N:	- MW-606
Drilling Co.:	Drilling Rig:	Borehole Diameter:	<u> </u>
Layne Environmental Ser Method:	CME-95 Measuring Point Elev. (ftmsl	12"): Sample Type:	
Hollow-Stem Auger	113.89	Mod Cal split spoon	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Total Depth (ft):	Ground Surface Elev. (ftmsl)	Metr. State Hosp, pkg area at 6	th and Balsam
CONSTRUCTION			ITHOLOGY
Depth, round, traffic	4-in ID TOV expansion Graphic Valu cap Log (ppm)	es Recovery Visua	l Description
	— Concrete	Silty CLAY (CL), reddish plastic, trace fine to me	brown, firm, moist, moderately
		plastic, trace fine to me	
		SILT and CLAY (ML-CL) very fine to fine grained	
10			
			ine to fine grained sand, light olive ce angular gravel to 1/4" dia
	· · · · · · · · · · · · · · · · · · ·	18" subrounded, well sorted	
20	olclay grout		olive brown, hard, damp
	0		ium grained, light brown, moist, d with Silty CLAY (CL), olive brown s, stiff, moist
			gray with orange mottling, firm, moist,
30		18" low plasticity SAND (SW), very fine to 10-20% gravel to 1/2" (o very coarse grained, dense, moist,
		10-17-22 - as above, grayish brov 18"	
			 40
	Sch. 40 PVC — Olank, 4-in ID	5-6-7 Silty CLAY (CL), olive g 18" gray caliche mottling, 2	ray, soft, moist to wet, heavy light 0-30% angular gravel to 1.5" dia,
		possibly decomposing li	
			 En
50		9-13-21 Clayey SILT (ML), gray 18" plasticity, trace very fin	with orange mottling, firm, moist, low legrained sand
		plasticity, trace very fin	
60		11-13-10 SAND (SP), medium to dense, moist to wet	coarse grained, light brown, medium
			h brown with dark orange brown
Continued Next Page	Interval Sampled		

TriHydro Corporation 920 Sheridan Street Laramie, Wyoming 82070 (307) 745-7474

Well Log


Well:


MW-606

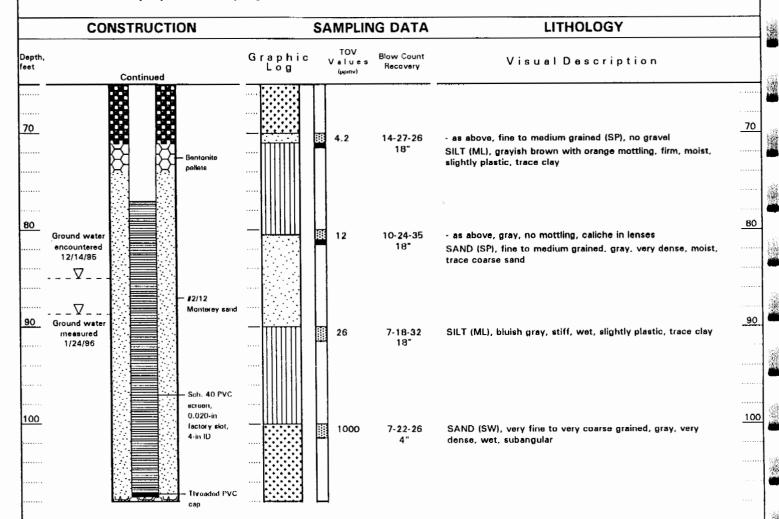
Page 2 of 2

Client:

Powerine Oil Company, Santa Fe Springs

TriHydro Corporation 920 Sheridan Street Laramie, Wyoming 82070 (307) 745-7474

Well Log


Well:

MW-607

Page 2 of 2

Client:

Powerine Oil Company, Santa Fe Springs

	easuremen!		
Total Depth 105	ft.	Well Diamete	r <u>4</u>
Depth to Hydrocarbon		Gallons/ft	
Depth to Water 74.6	<u>5</u> ft.	Gallons/ Casing Volume	
Water Column	ft.	Total Purge V	olume 66
Date and time of samp	le collec	tion: 1/10	96 2135
Comments regarding ph	ysical ch	aracter of grou	nd water:
Light tan in color, m	deroder -H	urbidity, Small	amount-
silt on the bottom		, .	
slight oder.	•	, ,	•
Field Parameters:			
Field Parameters:	он <u>6.78</u>	5c Field <u>2300</u>	_ 5C 025 c
Temperature: 27° C			
Temperature: 27° C p	of contain	ers:	<u>, , , , , , , , , , , , , , , , , , , </u>
Temperature: 27° C	of contain	ers:	<u>, , , , , , , , , , , , , , , , , , , </u>
Temperature: 27° C p Water phase, number of Hydrogarbon phase, no	of contain	ers:	<u>, , , , , , , , , , , , , , , , , , , </u>
Temperature: 27° C p	of contain	ers:	<u>, , , , , , , , , , , , , , , , , , , </u>
Temperature: 27° C p Water phase, number of Hydrogarbon phase, no	of contain	ers:	<u>, , , , , , , , , , , , , , , , , , , </u>

			ilaloia	
			1/9/9/4	
otal Depth _	105	ft.	Well Diameter	in.
epth to lydrogarbon _	<u> </u>	ft.	Gallons/ft	gal.
epth to Wate	82.75	ft.	Gdilons/ Casing Volume _	gal.
ater Column		ft.	Total Purge Vol	ume 44.0 gal.
ate and time	of sample	collect	ion: 1/10/96	2:15 pm
omments rega	rding phys	ical cha	racter of ground	water:
Grey Water	C. High turl	bidity, no	sheen, no silt a	Sand
no produc	†	•		
			77- الطبيعين في الفريدين في المراجعين والأسر المراجعين المراجعين المراجعين المراجعين المراجعين المراجعين المرا	
1				
<u> </u>				
7ield Parame	ters:			
Field Parame	25°C pH	6.95	3c Field 2200	50 02 5 c 220
Field Parame	25°C pH	6.95		50 02 5 c 220
Field Parame Temperature:	z5°C pH	6.95	36 Field <u>2200</u>	3C 025 0 220
Field Parame Temperature:	z5°C pH	6.95	3c Field 2200	3C 025 0 220
Field Parame Temperature:	ters: 25°C pH number of phase, num	6.95 containe	ontainers:	3C 025 0 220

ate of fluid lev	el measurement	19196	
otal Depth	105 ft.	Well Diameter	<u>4</u> in.
epth to ydrocarbon	oft.	Gailons/ft.	gal.
epth to Water	91.18 te.	Gallons/ Casing Volume	gal:
ater Column	ft.	Total Purge Volu	me 27.0 gal.
ate and time of	sample collect	:ion: 1/10/94	Z:00pm
mments regardin	g physical cha	racter of ground	water:
~	- • •	•	
short war in	Atoric oralin	ador hitardaidil	alanda inilla
		color, biturbidity	
		color, hiturbidity	
grey sit at the	bottom		
grey Sit at the	bettem		<i>y</i>
grey Sit at the	bettem		<i>y</i>
grey Sit at the riold Parameters	C pH 697	Sc Field 2600	3C 025 0_2655
grey Sit at the	C pH 697		3C 025 0_2655
grey Sit at the living state of the living sta	C pH 6.97	Sc Field 2600	3C 025 0_2655
grey Sit at the violat Parameters 240°	C pH 6.97	3c Field 2600	3C 025 0_2655
grey Sit at the living star phase, number	bottom C pH 697 ber of containe number of containe ffecting monit	Sc Field 2600 : ers:	sc e25 <u>2655</u>
grey SI at the ield Parameters 24° comperature: 24° compe	bottom C pH 697 ber of containe number of containe ffecting monit	Sc Field 2600	sc e25 <u>2655</u>

Date of fluid level meas	nt eweu.	t:19	196	
Total Depth 100	_ ft.	Well D	lameter	4
Depth to Hydrogarbon	_ ft.	Gallon	s/ft,	P
Depth to Water 75.8	_ ft.	Gailer Casing	s/ Volume	9°
Water Column	_ ft.	Total 1	Purge Volum	48
Date and time of sample	collec	tion:	1/10/96	11:40 AM
tan colored water, to	nigh ti	urbidity,	no sheen	, no silt
Field Parameters:			_	
Field Parameters: Temperature: 22°C. pH.	6.72	SC Field	1960 5	c e 25 c <u>1</u> 7
Temperature: 22°C pH				<u> </u>
Temperature: ZZCC pH	ontair	lers:	1	
Temperature: 22°C pH	er of c	ners:	1	

		19196	-
otal Depth	104	Well Diameter	in
epth to lydrocarbon	€ ft.	Gailons/ft.	gal
epth to Water_	91 tt.	Gailons/ Casing Volume	gal
ater Column	ft.	Total Purge Volume 20	p gal
comments regardi	ing physical cha	aracter of ground water:	
cdor Gr	een/Grey wate		reen/G
comments regards Odor, Gr. Silt on both	een/Grey water tom, cloudy	aracter of ground waters	reen/G
Comments regards Chor Gr. Silt on both Field Parameter: Temperature: 19	een/Grey water tom, cloudy	aracter of ground water:	reen G
cdor Granding Comments regards (cdor Granding Comments C	een/Grey water tom, cloudy	aracter of ground water: or, high turbidity, 6 sc Field 1300 sc e25	e_1136
cdor Granding Comments regards (cdor Granding Comments C	een Grey water tom, cloudy s: CC pH 10.82 mber of contain se, number of contain	aracter of ground water: C. high turbidity, 6 Sc Field 1300 SC 025 Jers: 1	e_1136

		18/96	
	_	Well Diameter	
Depth to Hydrogarbon	⊕ft.	Gallons/ft.	gal.
Septh to Water	5.06 ft.	Gailons/ Casing Volume	gal:
ater Column	ft.	Total Purge Volume	
ate and time of	sample collec	tion: 110194	10:16
	- · ·	<u> </u>	
Tan Water , h no sheen or Field Parameters:	product	at the bottom, High	conductivity
Pield Parameters: Temperature: 20° Water phase, numl	orown Sitt of product. C pt 7.02 per of contain	et the bottom, High	conductivity

ate of fluid level me	gentemen.	:	119196			
otal Depth 100	ft.	Well	Diameter	·	i	n.
epth to lydrocarbon	ft.	Gailo	ns/ft		qa	1.
Septh to Water 78.24	ft.	Gáll Casi	ons/ ng Volum e		96	1:
Water Column	ft.	Total	Purge Vo	_emul	43.0	۱.(
Date and time of samp!	le collec	tion:	1/10/9	C	10:33	
<u>light tan in color</u>	brown s	silt at	the botto	m, r	o produ	
Comments regarding phy Light tan in color or sheen, high t	mbidity	silt at	the botto	on, r	o produ	
light tan in color or sheen, high t	h Town S	SC F1e	the 10th	sc (o produ	24

1.	Well1				
2.	Date of fluid level measure	nteweu.	1994		
3.	Total Depth 100	_ft.	Well Diamete	r	in.
	Depth to Hydrocarbon 6	_ft.	Gallons/ft.		_ gal.
	Depth to Water 68.6 *		Gällons/ Casing Volum		gal:
	Water Column	_ ft.	Total Purge	Volume 102.0	<u> </u>
٨.	Date and time of sample	collec	tion:	10/96 10:	<u>so</u>
5,	Comments regarding physi				
	Grey water, odor, cla		-		Jank
	•	,	U	, ,	
	silt at the bottom	7-			
6.	Field Parameters:				
	Temperature: 1900 pH	6,95	SC Field _ZIOC	5C 025	1835
				1	
7.	Water phase, number of o	rontai		1	
	Hydrocarbon phase, number	er of	ontainers:	0-	
8.			<u>-</u>		
	* regauged 1-24-96: T)TW=8	8.62-		
	0				
9.	Field Personnel: B.mc	Level	a) Holladau.		
_					

APPENDIX C

LABORATORY REPORTS

APPENDIX C-1 CHAIN-OF-CUSTOD

- APPENDIX C-2 ORGANIC COMPOUNDS IN SOIL
- APPENDIX C-3 LEAD IN SOIL
- APPENDIX C-4 ORGANIC COMPOUNDS IN GROUNDWATER
- APPENDIX C-5 LEAD IN GROUNDWATER

P.O. BOX 5387 FULLERTON, CA 92635

> Tel: 714 449-9937 Fax: 714 449-9685

Project Addrson	Lakeland Le Spenigs Pubin	Client Pr / 8: Turn Aron III F	oject # #-C und Requ	Attention 8 Hours 6 Hours		/:	Sellative Soll (S) C.	202/11/20 (31. Apr.)	(N) 2010 / (N)	(3)	`//	Ana	ulysis I	Reque	//	Considers	/	Page of Z Lab Use Only Sample Condition as Received: Chilled Ves no Sealed yes no
Sample ID	Sample Location	Date	•	Time	Laboratory Sample Number	Samo						_	_	_	Kum		Conta	ner/Comments
muios		12.17	.95	0710	12438-001	A	1								4			
nusos				0820	-002	A	人								4			
mw203				0910	7003	A	X								Y			
mw101				1940	-004	A	X								4	<u> </u>		
mu 202				1017	-005	Д	X								Y			
mu 503				050	-006	١. ا	X								4			
mw 201				125	-207	Ι.	X								4			
nw103				1207	-008	I	K								4			
mw 501				350	-009	1	F								4	-		
mu 206		1		1990	-010	A	I								4			
Relinquieffed by (st	grajule)	Date 12-13-7	9 R	leceived by (si		7	m				I	Date	13/	95		1		ber of Containers
Company	LEW BRIDES	Time 6:45	Com	npany	JEL							Time	. 'Ψ			lonal Commen	is i	· ·
Relinquished by (si		Date		Received by La	boratory (signal	lure)					_	Date						
Company		Time	Com	прапу	· ·						_ [Time		`		*		

P.O. BOX 5387 FULLERTON, CA 92635

Tel: 714 449-993

Project Address 12354 Lakelmal Lands Fe Springs Project Contact Tox Quebins	Turn Around	d Requested: nediate Attention th 24-48 Hours th 72-96 Hours mail	Labaratory		307 (Si Sim	(A) Allianus (A)			Analysis	s Requi		Page Lab Use Only Sample Condition as Received: Chilled Payes on Sealed yes and
Sample Location	Date	Time	Laboratory Sample Number	S.			[_[1	\angle	/ William	Container/Comments
mw204	12-13-	951518	A2438-011		*						4	
EQUIPAR " mw 509 mw 602 mw 600 mw 600		1520	-012	A	1				<u> </u>		¥3	
mw509		1595	-013	A	1						4	
mw502		1615	-014	A	XL						4	
pri 600		1705	-015	A	χ						4	
mu601		1245	-016		X						4	
73	1		710	A	X	-					2	
*												
O Relipquished by (signature)	Date	Received by (s	gnature)	Ų				Date	<u> </u>			Table and a state of the state
Company MILLER BYLLICE Pelinquished by (signature)	12.13-95 Time 6:45 Date	Company • Received by La	tre	ure)	•			_	131		Additi	Total Number of Containers onal Comments
Company	Time	Company	l.					Tim	0			

GTEL	4211	MA	Y A\	/E.								C	HA	IN-C	OF-	CUS	STO	DY	REC JES	OR	D	3	4 2	26	9		A	2	4	30	7	\neg
ENVIRONMENTAL LABORATORIES, INC	WIC (316) (800)	945) 633	., KS 5-262 3-793	672 24 36	209							^	ND	ト	ML	7 31.	J N	LUI)E3	•				- •	_		, ,		v		'	
Company Name:			e #:			5-	<u>74</u>	74						3		-						1		1		l	-	1	1			1
TriHydro Corp		FAX	#: 3	07-	74	5	172	29						X									1		6		- [
Company Address: 920 Sheridan St	- Lovania LIV	820	#: 3 location 70		Po	ver	ine	_					h MTBE [Screen My Mad 201		20							<u></u>	des	est 🗆 He	I RCRA [0010	2			
Project Manager:		Clien	t Pro	ect II	D: (#)	6	3-0	7				10	1	Diesel □		₹ 2				-		# E	+	ğ	l b	A			Reactivity			
Project Manager: Nova Hill			ME)									with MTBE	듄	ă								SB S	2	1 =	§	0		7	8			
I attest that the proper field sa procedures were used during of these samples.	impling the collection	Sam	pler N	lame	(Prin	11						0	bons PID/	D Gas	(SIMDIS)	1 🗆 413.2	- 1	4	0 0 0	0 8	PCB only	O/TAL	D AL	esticides	-Semi-	, Pollutant	STC	7420	Flash Point	Q	2(
Field	GTEL	ners	•	Matri	x		Met Pres			Sa	mpling	8050	tydrocar	ns GC/FI	n Profile	ase 413.	.1 D SM	080	EPA 801	EPA 80	8080	7. 🗆 824	2.0 827	tals 🗆 P	8 UVO	- Priority	TICE	200.7	Flast		8	
Sample ID	Lab # (Lab use only)	# Containers	WATER	AIR	PRODUCT	· 도	HNO,	띨	UNPRESERVED	(SPECIFY) DATE	TIME	BTEX/602 -	BTEX/Gas Hydrocarbons PID/FID U with MTBE	Hydrocarbons GC/FID Gas □	Hydrocarbon Profile (SIMDIS) □	Oil and Grease 413.1 413.2 SM 503	TPH/IR 418.1 □ SM 503 □	EDB by 504 © DBCP by 504	EPA 503.1 EPA 502.2 EPA 6010	EPA 602 □ EPA 8020 □	EPA 608 □ 8080 □ PCB only □	EPA 824/PPL □ 8240/TAL □ NBS (+15) □	EPA 625/PPL 8270/1AL NBS (+25)	EP TOX Metals Pesticides Herbicides	TCLP Metals □ VOA □ Semi-VOA □ Pest □ Herb □	EPA Metals - Priority Pollutant 🗆 TAL 🗀 RCRA 🗀	CAM Metals TTLC STLC	Lead 239.2 🗆 200.7 🗆 7420 🗆 7421 🗆 6010 🗆	Organic Lead	bod	Ş	il I
MW-606 · 10 ft	A2439-001	1	X		\sqcap			X	\top		95 1310	-		×					1	T			\top		1				\top	X	X	
MW-606 50 ft	7002	1	X		П			X			98 1426			×																×	×	
MW-606 80 ft	-003	1	X					X			fs 1505		I	×						\prod				\perp						٦		
MW-607 10 st	-004		X		\prod			X			9 062			×																>		
MW-607 70 ft	-005		X		Ш			X	\perp	1249	45093	2	\perp	×	+					1_			\perp		\perp			\perp	\perp	<u> ></u>	×	1
MW-607 80 ft	-006	1	X		$\bot \bot$	1	\perp	X	\perp	12-14	43 095	0	\perp	<u> ×</u>	1_	$oxed{oxed}$		4		_			4	4				\perp	\perp	<u> ×</u>	1×	1
		ļ		\sqcup	44	\perp		$\downarrow \downarrow$	_	-		 	lacksquare	-	ــ	-		4		┼	_		_	\perp	┦	ـ		-		-		+
		-	-	-	++	+		1-1		+		- -	+-	┼-	╀		\vdash	-+	-	+	_	\vdash		-	┿	-						┼╌┤
		-	╁┼	\vdash	++	+	+	+	+	+		+-	╀	+	╀	_		\dashv	+	+	┼		-+	+	+	+-		\dashv	+	+-	┼─	+
TAT	Special H	andlin		Ш	<u> </u>	SF	ECIA		TEC	CTION	LIMITS			1		<u> </u>	┸┰╏	REM	ARKS	╀-	<u> </u>										ــــــــــــــــــــــــــــــــــــــ	
Priority (24 hr)	GTEL Contact				_																											5
7 Business Days Other 2 WL5 Business Days	PO BILL TO POL	eric	re_		_	SF	ECIA	L R	POI	RTING	REQUI	REM	ENT	S				Lab	Use C	nly	Lot #					St	orage	e Lo	cation	1;		
	QA / OC LEVEL OTHER					E,	ıx □	ı										Morl	C Orde		_											
	Relinquished by Sampl	er:	$\overline{}$	//	n	1	\^ <u>L</u>				<u> </u>	Dat	е		Tir	ne			eived			\prec										
	<u> </u>	M	1	1								44		5 /	10	<u> </u>	1	_/	X	7	<u>_</u>	\checkmark	Z	10				12	-14	1-7	51	1/0
CUSTODY	Relinquished by:											Date	е	1		me			eived		`	ر ا	}									
RECORD	Relinquished by:											Dat	e		Tir	me		Rect	ived	by L	abor	atory	J									

· 🛊

P.O. BOX 5387 FULLERTON, CA 92635

> Tel: 714 449-9937 Fax: 714 449-9685

Project Contact	•	Cilent Project 63- Turn Around Imme	Requested: ediate Attention 24-48 Hours 72-96 Hours		/	7011 Souls	SCF BE (SU)	(X) AND CONSTRUCTION OF THE CONSTRUCTION OF TH	\$\frac{1}{2} \frac{1}{2} \frac{1}{2}	/	Ana	alysis	Reque		oct of Containers	//	Page of Z Lab Use Only Sample Condition as Received: Chilled Types The
Sample ID	Sample Location	Date	Time	Laboratory Sample Number	Way.	1/2	<u>/</u> _	₹		_	_	_	_			Conta	iner/Comments
	MW-605 10 St	12-15-9	5 0950	ALYV5-1	S	X		X						1			
	MW-605 60 ft	12-15-9	5 1045	AZYYJ-Z	5	χ	X	χ						1			,
	MW-605 70 ft	12-15-99	5 1102	RY45-3	5	X	Χ	X						ł			
	MW-107 10 ft		5 1613	12145-4	5	X	X	χ						1			
•	MW-107 30 Ft	12-15-9	5 1628	A2445-5	5	X	Χ	X						1			
	MW-107 70 ft		0730	ALV45-6	5	X	X	X									
	MW-106 10 ft		5 1400	12445-7	5	X	Х	Х						1			
	MW-106 60 ft	12-16-95	1458	A2445-9	5	X	X	X						1			
	MW-106 80 ft	12-17-95		12445-9	5	X	X	Х						l			
	MW-105 10 ft	12-17-9	5 1230	ALINS-K	5	X	X	<u>χ</u>						1			
O Relinquished by	(signature)	Date 17-18-95	Received by (s	ignature)	$\overline{}$			`		1	Date/	2/1	15	10		Total Num	ber of Containers
Company	(signature)	Time 6800 Date	O Received by La	aboratory (signat	ure)	<u> </u>					Time Date	100		Addit	ional Comm	nents	
Сонірану		11110	Company	; }							10						,

P.O. BOX 5387 FULLERTON, CA 92635

> Tel: 714 449-9937 Fax: 714 449-9685

Project Name Project Address Santa Project Contact Nora	dro Corp ine EOD Fe Springs Hill, Math Winefield		Client Project 4 Turn Around Rec Rush 24 Rush 72 Normal	quested: ate Attention I-48 Hours 2-96 Hours		/:	TON SON (S)	Some of the sail of	(N) (SO) (SO) (SO) (SO) (SO) (SO) (SO) (SO	100		Ana	lysis F	Reques	//	Con	Page 2 of 2 Lab Use Only Sample Condition as Received: Chilled Pyes On no Sealed Oyes Tho
Sample ID	Sample Location		Date	Time	Laboratory Sample Number	Zamo,		33	Y \	y	/ ,	/ ,	/ ,	/ ,	Numb	Con	tainer/Comments
	MW-105 60 ft		121795	1350	A245-11		X	χ	X						1		
	MW-105 70 ft	- 1		1405	AZ445-12	_	Х	X	ኦ						İ		
																	ſ
																	-
		*	•														
O Religouished by	(signature)		18-95	Received by is	ignature)	7	· ·	_		·		Pate 2	78/	45	2		imber of Containers
Company TriHyo			300	ompany (Time	ick)	Additi	ional Comments	
Relinquished by	(signature)	Date	0	Received by L	aboratory (signat	uire)						Date					
Company		Time	C	ompany	:	•	,			·	_ [Time					

P.O. BOX 5387 FULLERTON, CA 92635

> Tel: 714 449-9937 Fax: 714 449-9685

Project Contact	a fe Spr	ings If Winefield	2 - 8 2 - 8 2 - 8	quested: ate Attention I-48 Hours 2-96 Hours	Laboratory	/	J. Minic Soil Je.	1 S (5) Ships (5)	ST S	Car 1921 1865		/	alysis	Reque		Summers Con	Page of Lab Use Only Sample Condition as Received: Chilled yes no
Sample ID	Sam	ple Location	Date	Time	Sample Number	/\$	15	7~	<u> </u>	<u>Y_</u>	\angle	\angle		_	/ ¥	Con	tainer/Comments
	MW-606		12-18-45	1602	A2446001	A	Х	X							4		
	MW-604	10H	12-18-95	1036	AZYYBOOZ	5	X	X	X						- 1		
	MW-604	60ft	12-18-95	1125	AZ446-003		X	X	X						١		
	MW-604	80 ft	12-18-95		A2446004			X	X						1		
,	MW-607		12-18-95	1700	A2446-005	A	Y	X							4		
O Relinguished by	(Signature). The	Date 12	1895	Received by (9	ignature)	•		λ	_	\	,	Date	1-18	195	11	Total Nu	imber of Containers
Relinquished by		Time L Date	701		iboratory (signati	(ure)	l	<u></u>			_ _ [Time Date	10	L	Addition	onal Comments	
Company	,	Time		mpany	· ·		44	-	tagific.		100 May 17	11117	e Servi				

P.O. BOX 5387 FULLERTON, CA 92635

Tel: 714 449-9937

Project Name Project Address Sant Project Contact	rine EOD a le Springs	Client Project 63 Turn Around Re Rush 2 Rush 7 Normal	equested: late Attention 4-48 Hours 2-96 Hours	. /	/	Matrix Solite	THE STREET OF THE	(A) Section of the second of t	/ / / / / / / / / / / / / / / / / / /	//	nalysis	Reque	//	S. Juguero Jo	Page of Lab Use Only Sample Condition as Received: Chilled yes no
Sample ID	Sample Location	Date	Time	Laboratory Sample Number	/ 🐉	<u>_</u>	<u> Z</u>	7	<u> </u>	\mathcal{L}	\bot	_		Conta	iner/Comments
MW-605.	Rowerine/MSH	12-19-95	0940	12480-001	A	X	X	X					4	no Pb	RUSH
MW-604	Powernc/msia	12-19-95	/2 30 4.	7002	Á	X	X	X					4	no Pb	RUSH
MW-106	Powerine/EAST Pant	12-19-45	1535	-003	A	×	×	\gtrsim					4	no Pb	RUSH
MW-603 10	ft	12-19-95	0902.	700/	5	X	χ	X						nonual T	IA ·
MW-603 2	oft	12-19-95	0915	-005	5	X	X	X					1	normal 7	14
MW-603	704+	12-19-95	l .	-006	5	χ	X	Х)_	nonual T	//4
·								-				-			
O Relinguished by	(signature) 71.	Date 17-19-95	Recoived by As	ignature)	0		<u>↓</u>	<u></u>		Date		1-9 <u>9</u>	15	Total Nur	nber of Containers
Company I ri Hy Relinquished by	tro Corp	1602 C	Received by Li	RI aboratory (signal	ture)	Z	<i>J</i> -			Time V	0	2	Additi	onal Comments	
Company		Time C	ompany							Time	l				÷

P.O. BOX 5387 FULLERTON, CA 92635

> Tel: 714 449-9937 Fax: 714 449-9685

	lro Corp EDD fe Springs Hill, Mott Winefield Sample Location	Rush Rush Norm	Requested: diate Attention 24-48 Hours 72-96 Hours al	Laboratory Sample Number		Walter Source	THE STATE ST	10C's SON PROPERTY		/ ,		alysis I	Reque	//	Conta	Page	of I
Mw-603		1212.60	20 4/	AZYSZ-VOI	Δ	x	×						<u>'</u>				
	Powerine/MSIt	12/20/45	1	1	_									4	rush		
MW-107	Power ne / East Taux Failm	12/20145	1135	A2452-WZ	A	X						_	_	4	tush		
UST-1A	parking lot USTS * &	12-20-95	0740	A2487003	5	X		X	X					2	Inormal T		
UST-2A	parking lot USTs	12.2099	0600	A2452-004	5	X		X	X	١.				2	organic 801548		υI <i>α</i>
MW-105	Powerine/WET	12-20-95	1350	AZIKZUS	A	Χ	X							4	rush		
													,		,	:	· .
															*one tub	e is for	Pb
															if you no Insuffici	ed 2 t	ubes. We in
															Po tube. Too much Other tube	for organ	nics.
										_					Other tube	is full	·
• Relinquished by ((signature)	1. / /	Received by (s	ignature)	.	-			•		Date				Total Num	ber of Contain	ers
Company	ydro Corporation		Company	Envi				. /	7/		Time 15	20		Additio	onal Comments		
Relinquished by (Date	Received by L	aboratory (signat	ure)	<u> </u>					Date						
Company	*	Time	Company						ı		Time.			i i		~~	

CORE LABORATORIES, INC.

307 745 7729:# 9/

1-15-96: 5:36PM: CORE ANAHEIM+

SENT BY:

CHAIN OF CUSTODY RECORD

	CUSTOMER INFORMATION	PROJ	ECT INFO	RMATION			Γ	/	ON TO THE STANCE	/	7	/	/	//	77	/	
COMPANY: TPT	HYDRO	PPOJECT NAME-NUMBER:	20-C.	63-6	01	 			7	13.0	1	/	' /	<i>[] ;</i>	$^{\prime}$ / $_{\cdot}$	/	
CENT DEPOTAT TO	ICRA Hil!	-	ING INFOR			Z		/ 3	5	W		/	/	//	//		
ACT ACT CAS	SheridAN ST.	BILL TO POWERINE	nil ca	ATTAIN ME	NEFIEL	CONTAINE		SO	5/,1	y /	/ /	/	' /	11	/ /		
		ADDRESS: 17354	LANOI	and Per	I PO R	3	V à) Q				/	/	//	/LAF	OL. F	B NO.
FUKUM)	E, wyoming 82070	SAVIA FE SPRING	C Pu G	MALTA 1953	2008	2	4	/	6 M) /	/ /	/		///	/ 	60 0	
*HONE: 347	-745-7474	FHONE:	- 6/1/	MAND ROAD 10670-3857 163-01		A BE		/3	and of		/	/		//			770
307	745 - 7729	FAX 21. QUL SOS	PO NO.:	63-01		3	1		\}	/ /	/ /	/	1	///			
SAMPLE NO.	SAMPLE DESCRIPTION	SAMPLE SAMPLE DATE TIME	SAMPLÉ.	CONTAINER TYPE	T	1	1	Sep. 1	ÿ /					REM	ARKS /	PREC	AUTIONS
M& 605	natil / 15	1-10-96 10=10		01: 25-2	HWOJ	<u>.</u>	X	Ì		1	1					(3-41
MAC BOS	mw 605	1-10-96 10-33			HW03	1			十	-							
	MW 606 MW 607	V-10-96 10:50			HW03	17	X		_	 	\vdash						
	mw 604			1		1;	X			+							
	MW 603	1-10-96-11-10	WHICK	T .	HND3	1	1	1-1		+		_					
	MW 108	7	WATER	PLASTIC	1	1	7		+	+							
	MW 167				HADS	. !	X			+	!						
	MW 166	1-10-96 14-15			HAVS				1	 			\Box				
				PLASTIC		1	X	\vdash		†		_	H				
	MW 105		-	rifis; ic	HANS	1	 - }-	 		+			<u> </u>				-
SAMPLER ()_		EN FITCHED BY			<u> </u>	l	<u>!</u>		At-	 BILL NO	<u> </u>		1				
FEOL RED TUP WAFO	JUNE SAME DAY 24HOURS			AC 0:	ve * (POUT IN		OTHER									
1 RELINOUSHED BY		ATE 2. REUNCUISHED E			, A.		D#TE	CHL	3. RELH	OUISHEE) 9y:	:					DATE
S GNATURE OF	il O Tollakey	SIGNATURE:	- 5	- 1 04 04			j-jj.	96	SIGNA	TVRE.]
PRINTED NAME (OM		THE PRINTED NAME OF	NP AND	grande.			7 %.	₹	FINTE	MAMEC)OMPAN	Ÿ					INE
1 RECEIVED BY:		2. RECENTED BY:	-CAU			_	SITE'	-	3. RECE		<u>: </u>						DATE
PRINTED NAME/CON		11-90	MO/AIV			\dashv	TIME		FFINTEC		OMEAL	· -					TILVE
		NE 32 PRIVILE NAME CO	AL ALA				I (ME		1100	- ANTONIA	VIRT CIN						i
Ansheim, Cal 1256 E. Gere	Autry #64 1(733 6, Lethary 0 11/4 1(733 6, Lethary 0 11/4 Amma, Colorado 5)014 14 14 14 14 14 14 14	Caset, Wyoning 420 West 1st 50 ee. Laper Wyoning (200 -191) 135-5141 4800 (1650:36		Corpus Christi Taxo 1713 Nevah Padra Is Lanous (Iventi Tixo 1512) 288-3673 18(4) 1545-8223	beit I that		92 He 17	ersten, 7 230 Mode crsten, 1 131 3434 (331 1344	ση Roseτ 'υκε±7507! 911 L	;		3445 E Sviete (316 !	Jegli: Po	ara 10163 - 6	Ξ	if (D ther	n, Caril (14 à 2080 8401

TESTING LABORATORIES JONES ENVIRONMENTAL

LABORATORY REPORT

Client:

Powerine Oil Company

12354 Lakeland Road Client Address:

Santa Fe Springs, CA 90670

Report Date:

12/15/16

JEL Ref. No.: Client Ref. No.: A-2439 63-01

Attn:

Matt Winefield

Date Sampled: Date Received: 12/12-14/95

Project:

Powerine Oil Co.

Date Analyzed:

12/14/95

Physical State:

12/14/95 Soil

Project Address:

Santa Fe Springs, CA

ANALYSES REQUESTED

- EPA 8020 Volatile Aromatic Hydrocarbons 1.
- 2. EPA 8010 - Volatile Halogenated Hydrocarbons
- 3. ATSM 2887
- . Simulated Distillation

4. Mod 8015 Gasoline - Volatile Hydrocarbons

Approval:

Steve Jones, Ph.D. Laboratory Manager

TESTING LABORATORIES

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client: Client Address:

Powerine Oil Company

12354 Lakeland Road

Report Date:

12/15/16

Santa Fe Springs, CA 90670

JEL Ref. No.: Client Ref. No.: A-2439 63-01

Attn:

Matt Winefield

Date Sampled:

12/12-14/95

Project:

Powerine Oil Co.

Date Received:

12/14/95

Date Analyzed:

12/14/95

Project Address:

Santa Fe Springs, CA

Physical State:

Soil

EPA 8020 - Volatile Aromatic Hydrocarbons

•		Concentration	(ug/Kg)		Reporting	
Sample ID	Benzene	Toluene	Ethylbenzene	Xylenes	Limits (ug/Kg)	Surrogate Recovery %
MW-606-10	ND	ND	ND	ND	5.0	82
MW-606-50	ND	ND	ND	ND	5.0	79
MW-606-80	ND	ND	ND	ND	5.0	83
MW-607-10	ND	ND	ND	ND	5.0	81
MW-607-70	ND	ND	ND	ND	5.0	81
MW-607-80	ND	ND	ND	ND	5.0	89

ND = Not Detected

TESTING LABORATORIES JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client: Client Address: Powerine Oil Company

12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date:

JEL Ref. No.:

Client Ref. No.:

12/15/16

A-2439

63-01

Attn:

Matt Winefield

Date Sampled:

12/12-14/95

Date Received:

12/14/95

Project: Project Address: Powerine Oil Co. Santa Fe Springs, CA Date Analyzed: Physical State:

12/14/95 Soil

EPA 8020 - Volatile Aromatic Hydrocarbons

Sample Spiked: MW-607-80

Parameter	MS Recovery (%)	MSD Recovery (%)	RPD	Acceptability Range (%)
Toluene	103%	98%	5.0%	65 - 125
o-Xylene	102%	99%	2.9%	65 - 125

Method Blank = Not Detected

MS

= Matrix Spike

MSD RPD

= Matrix Spike Duplicate

= Relative Percent Difference

TESTING LABORATORIES JONES ENVIRONMENTAL

LABORATORY RESULTS

Client: Client Address: Powerine Oil Company 12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date: JEL Ref. No.:

12/15/16 A-2439

Client Ref. No.:

63-01

Attn:

Matt Winefield

Date Sampled: Date Received: 12/12-14/95

Project:

Powerine Oil Co.

Date Analyzed:

12/14/95

Project Address:

Santa Fe Springs, CA

Physical State:

12/14/95 Soil

Simulated Distillation (Carbon Chain ID)

Sample ID Concentration (mg/Kg)

Carbon Chain Range	<u>MW-606-</u> 10	<u>MW-606-</u> <u>50</u>	<u>MW-606-</u> 80	<u>MW-607-</u> 10	<u>MW-607-</u> 70	<u>MW-607-</u> <u>80</u>
C8-C9	ND	ND	ND	ND	ND	ND
C10-C11	ND	ND	ND	ND	ND	ND
C12-C13	ND	ND	ND	ND	ND	ND
C14-C15	ND	ND	ND	ND	ND	ND
C16-C17	ND	ND	ND	ND	ND	ND
C18-C19	ND	ND	ND	ND	ND	ND
C20-C23	ND	ND	ND	ND	ND	ND
C24-C27	ND	ND	ND	ND	ND	ND
C28-C31	ND	ND	ND	ND	ND	ND
C32-C35	ND	ND	ND	ND	ND	ND
C36-C39	ND	ND	ND	ND	ND	ND
C40-C43	ND	ND	ND	ND	ND	ND
C44+	ND	ND	ND	ND	ND	ND
Total	ND	ND	ND	ND	ND	ND
Reporting Limits	10	10	10	10	10	10
Surrogate Recovery %	105	78	125	94	83	63

ND = Not Detected

TESTING LABORATORIES

JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client:
Client Address:

Project Address:

Powerine Oil Company

12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date: JEL Ref. No.: 12/15/16

Client Ref. No.:

A-2439 63-01

Attn:

Matt Winefield

Date Sampled:

12/12-14/95

Project: Powerine Oil Co.

Powerine Oil Co. Santa Fe Springs, CA Date Received: Date Analyzed:

12/14/95 12/14/95

Physical State:

Soil

Simulated Distillation (Carbon Chain ID)

Sample Spiked: MW-607-80

MS MSD Acceptability
Parameter Recovery (%) Recovery (%) RPD Range (%)

Diesel 109% 102% 6.4% 65 - 125

Method Blank = Not Detected

MS = Matrix Spike

MSD = Matrix Spike Duplicate RPD = Relative Percent Difference

TESTING LARORATORIES

LABORATORY RESULTS

Client: Client Address: Powerine Oil Company 12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date:

JEL Ref. No.: Client Ref. No.: 12/15/16

A-2439 63-01

12/12-14/95

Attn:

Project:

Project Address:

Matt Winefield

Powerine Oil Co.

Date Sampled: Date Received:

12/14/95 Date Analyzed: 12/14/95

Physical State: Soil

Santa Fe Springs, CA

EPA 8010 - Volatile Halogenated Hydrocarbons

Sample ID Concentration (ug/Kg)

Parameter	MW-606-10	MW-606-50	MW-606-80	MW-607-10
Dichlorodifluoromethane	ND	ND	ND	ND
Chloromethane	ND	ND	ND	ND
Vinyl Chloride	ND	ND	ND	ND
Bromomethane	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND
Trichlorofluoromethane	ND	ND	ND	ND
1,1-Dichloroethylene	ND	ND	ND	ND
Methylene Chloride	ND	ND	ND	ND
t-1,2-Dichloroethylene	ND	ND	ND	ND
1,1-Dichloroethane	ND	ND	ND	ND
c-1,2-Dichloroethylene	ND	ND	ND	ND
Chloroform	ND	ND	ND	ND
1,1,1-Trichloroethane	ND	ND.	ND_{\cdot}	ND,
Carbon Tetrachloride	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND
Trichloroethylene	ND	ND	ND	ND
1,2-Dichloropropane	ND	ND	ND	ND
Bromodichloromethane	ND	ND	ND	ND
c-1,3-Dichloropropylene	ND	ND	ND	ND
t-1,3-Dichloropropylene	ND	ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND
Dibromochloromethane	ND	ND	ND	ND
Chlorobenzene	ND	ND	ND	ND
Tetrachloroethylene	ND	ND	ND	ND
Bromoform	ND	ND	ND	ND
1,3-Dichlorobenzene	ND	ND	ND	ND
1,4-Dichlorobenzene	ND	ND	ND	ND
1,2-Dichlorobenzene	ND	ND	ND	ND
Reporting Limits:	1.0	1.0	1.0	1.0
Surrogate Recovery % #1	83	78	75	68
Surrogate Recovery % #2	81	70	69	60
Surrogate Recovery % #3 ND = Not Detected	88	82	78	73

TESTINE LARORATORIES

LABORATORY RESULTS

Client: Client Address: Powerine Oil Company 12354 Lakeland Road Santa Fe Springs, CA 90670

Report Date: JEL Ref. No.: Client Ref. No.:

12/15/16 A-2439 63-01

Attn:

Matt Winefield

Date Sampled: Date Received: 12/12-14/95 12/14/95

Project:

Powerine Oil Co.

Date Analyzed: Physical State:

12/14/95 Soil

Project Address:

Santa Fe Springs, CA

EPA 8010 - Volatile Halogenated Hydrocarbons

Sample ID Concentration (ug/Kg)

_	Concentration (ug/Kg)			
Parameter	MW-607-70	MW-607-80		
Dichlorodifluoromethane	ND	ND		
Chloromethane	ND	ND		
Vinyl Chloride	ND	ND		
Bromomethane	ND	ND		
Chloroethane	ND	ND		
Trichlorofluoromethane	ND	ND		
1,1-Dichloroethylene	ND	ND		
Methylene Chloride	ND	ND		
t-1,2-Dichloroethylene	ND	ND		
1,1-Dichloroethane	ND	ND		
c-1,2-Dichloroethylene	ND	ND		
Chloroform	ND.	ND		
1,1,1-Trichloroethane	ND	ND		
Carbon Tetrachloride	ND	ND		
1,2-Dichloroethane	ND	ND		
Trichloroethylene	ND	ND		
1,2-Dichloropropane	ND	ND		
Bromodichloromethane	ND	ND		
c-1,3-Dichloropropylene	ND	ND		
t-1,3-Dichloropropylene	ND	ND		
1,1,2-Trichloroethane	ND	ND		
1,1,2,2-Tetrachloroethane	ND	ND		
Dibromochloromethane	ND	ND		
Chlorobenzene	ND	ND		
Tetrachloroethylene	ND	ND		
Bromoform	ND	ND		
1,3-Dichlorobenzene	ND	ND		
1,4-Dichlorobenzene	ND	ND		
1,2-Dichlorobenzene	ND	ND		
Reporting Limits:	1.0	1.0		
Surrogate Recovery % #1	91	86		
Surrogate Recovery % #2	95	84		
Surrogate Recovery % #3 ND = Not Detected	94	89		

TESTING LABORATORIES JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client: Client Address: Powerine Oil Company

12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date:

JEL Ref. No.: Client Ref. No.: 12/15/16

A-2439

63-01

Attn:

Matt Winefield

Date Sampled:

12/12-14/95

Project:

Powerine Oil Co.

Date Received: Date Analyzed: 12/14/95

Project Address:

Santa Fe Springs, CA

Physical State:

12/14/95

Soil

EPA 8010 - Volatile Halogenated Hydrocarbons

Sample Spiked: TRIP BLANK

	MS	MSD		Acceptability		
Parameter	Recovery	Recovery	RPD	Range (%)		
1,1-DCE	135%	136%	1.3%	65 - 140		
TCE	124%	126%	1.6%	65 - 140		
CLBZ	118%	118%	0.3%	65 - 140		

Method Blank = Not Detected

MS = Matrix Spike

= Matrix Spike Duplicate MSD RPD = Relative Percent Difference

TESTING LABORATORIES

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client: Client Address: Powerine Oil Company 12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date: JEL Ref. No.: Client Ref. No.:

12/15/16 A-2439 63-01

Attn:

Matt Winefield

Date Sampled: Date Received: 12/12-14/95

Project:

Powerine Oil Co.

Date Analyzed:

12/14/95 12/14/95

Project Address:

Santa Fe Springs, CA

Physical State:

Soil

Modified EPA 8015 - Volatile Hydrocarbons (Gasoline)

Sample ID	Concentration (mg/Kg)	Surrogate Recovery %	Reporting Limits (mg/Kg)
MW 606-10	ND	82	1.0
MW 606-50	ND	79	1.0
MW 606-80	ND	83	1.0
MW 607-10	ND	81	1.0
MW 607-70	ND	81	1.0
MW 607-80	ND	89	1.0

= Not Detected ND

TESTING LABORATORIES JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client:

Powerine Oil Company

Client Address:

12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date:

JEL Ref. No.:

Client Ref. No.:

12/15/16

A-2439

63-01

Attn:

Matt Winefield

Date Sampled:

12/12-14/95

Project:

Powerine Oil Co.

Date Received:

12/14/95

Date Analyzed:

12/14/95

Project Address:

Santa Fe Springs, CA

Physical State:

Soil

Modified EPA 8015 - Volatile Hydrocarbons (Gasoline)

Sample Spiked: MW 607-80

Parameter	MS Recovery (%)	MSD Recovery (%)	RPD	Acceptability Range (%)	
Gasoline	117%	116%	1.5%	65 - 125	

Method Blank = Not Detected

MS

= Matrix Spike

MSD

= Matrix Spike Duplicate

RPD

= Relative Percent Difference

TESTING LABORATORIES

JONES ENVIRONMENTAL

LABORATORY REPORT

Client: Client Address: Powerine Oil Company

12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date:

JEL Ref. No.:

Client Ref. No.:

12/19/95

A-2445 63-01

Attn:

Project:

Project Address:

Nora Hill

Powerine

Santa Fe Springs, CA

Date Sampled:

Date Received:

Date Analyzed:

Physical State:

12/15-17/95 12/18/95

12/18/95

Soil

ANALYSES REQUESTED

- ١. EPA 8020 - Volatile Aromatic Hydrocarbons
- 2. EPA 8010 - Volatile Halogenated Hydrocarbons
- 3. ATSM 2887
- Simulated Distillation

Mod 8015 Gasoline - Volatile Hydrocarbons

Approval:

Steve Jones, Ph.D. Laboratory Manager

TESTING LABORATORIES

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

Powerine Oil Company 12354 Lakeland Road

Report Date: JEL Ref. No.: 12/19/95 A-2445

Client Address:

Santa Fe Springs, CA 90670

Client Ref. No.:

63-01

Attn:

Nora Hill

Date Sampled:

12/15-17/95

Project:

Powerine

Date Received: Date Analyzed: 12/18/95 12/18/95

Project Address:

Santa Fe Springs, CA

Physical State:

Soil

EPA 8020 - Volatile Aromatic Hydrocarbons

	Concentration (ug/Kg)			Reporting		
Sample ID	Benzene	Toluene	Ethylbenzene	Xylenes	Limits (ug/Kg)	Surrogate Recovery %
MW605-10	ND	ND	ND	ND	5.0	104
MW605-60	ND	ND	ND	ND	5.0	93
MW605-70	ND	ND	ND	ND	5.0	95
MW107-10	ND	ND	ND	ND	5.0	94
MW107-30	ND	ND	ND	ND	5.0	93
MW107-70	ND	ND	ND	ND	5.0	94
MW106-10	ND	ND	ND	14	5.0	99
MW106-60	ND	ND	ND	ND	5.0	97
MW106-80	18	19	11	100	5.0	
MW105-10	ND	5.5	ND	34	5.0	102
MW105-60	ND	ND	ND	17	5.0	100
MW105-70	ND	ND	ND	22	5.0	100

ND = Not Detected

TESTING LABORATORIES JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client: Client Address: Powerine Oil Company

12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date:

JEL Ref. No.:

Client Ref. No.:

12/19/95

A-2445

63-01

Attn:

Nora Hill

Date Sampled: Date Received: 12/15-17/95

Project:

Powerine

Date Analyzed:

12/18/95 12/18/95

Project Address:

Santa Fe Springs, CA

Physical State:

Soil

EPA 8020 - Volatile Aromatic Hydrocarbons

Sample Spiked: MW107-70

Parameter	MS Recovery (%)	MSD Recovery (%)	RPD	Acceptability Range (%)
Toluene	95%	96%	1.3%	65 - 125
o-Xylene	99%	102%	3.0%	65 - 125

Method Blank = Not Detected

MS

= Matrix Spike

MSD

= Matrix Spike Duplicate

= Relative Percent Difference RPD

TESTING LABORATORIES JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

Client Address:

Powerine Oil Company

12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date:

JEL Ref. No.:

Client Ref. No.:

12/19/95

A-2445

63-01

Attn:

Nora Hill

Date Sampled:

Date Received:

12/15-17/95 12/18/95

Project:

Powerine

Santa Fe Springs, CA

Date Analyzed:

12/18/95

Project Address:

Physical State:

Soil

Simulated Distillation (Carbon Chain ID)

Sample ID Concentration (mg/Kg)

Carbon Chain Range	MW105-10	MW105-60	<u>MW105-</u> 70	MW106-10	MW106-60	MW106-80
C8-C9	ND	ND	ND	ND	ND	ND
C10-C11	ND	ND	ND	ND	ND	ND
C12-C13	ND	ND	ND	ND	ND	ND
C14-C15	ND	ND	ND	ND	ND	ND
C16-C17	ND	ND	ND	ND	ND	ND
C18-C19	ND	ND	ND	ND	ND	ND
C20-C23	ND	ND	ND	ND	ND	ND
C24-C27	ND	ND	ND	ND	ND	ND
C28-C31	ND	ND	ND	ND	ND	ND
C32-C35	ND	ND	ND	ND	ND	ND
C36-C39	ND	ND	ND	ND	ND	ND
C40-C43	ND	ND	ND	ND	ND	ND
C44+	ND	ND	ND	ND	ND	ND
Total	ND	ND	ND	ND	ND	ND
Reporting Limits	10	10	10	10	10	10
Surrogate Recovery %	107	93	93	100	106	117

ND = Not Detected

TESTING LABORATORIES JONES ENVIRONMENTAL

LABORATORY RESULTS

Client: Client Address: Powerine Oil Company 12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date: JEL Ref. No.: Client Ref. No.:

12/19/95 A-2445 63-01

Attn:

ND

= Not Detected

Nora Hill

Project: Power

Project Address:

Powerine Santa Fe Springs, CA Date Sampled:

Date Received:

Date Analyzed: Physical State: 12/15-17/95

12/18/95 12/18/95 Soil

Simulated Distillation (Carbon Chain ID)

Sample ID Concentration (mg/Kg)

Carbon Chain Range	MW107-10	MW107-30	MW105- 70
C8-C9	ND	ND	ND
C10-C11	ND	ND	ND
C12-C13	ND	ND	ND
C14-C15	ND	ND	ND
C16-C17	ND	ND	ND
C18-C19	ND	ND	ND
C20-C23	ND	ND	ND
C24-C27	ND	ND	ND
C28-C31	ND	ND	ND
C32-C35	ND	ND	ND
C36-C39	ND	ND	ND
C40-C43	ND	ND	ND
C44+	ND	ND	ND
Total	ND	ND	ND
Reporting Limits	10	10	10
Surrogate Recovery %	112	101	105

TESTING LABORATORIES JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client: Client Address: Powerine Oil Company

12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date:

12/19/95

JEL Ref. No.:

A-2445

Client Ref. No.:

63-01

Attn:

Nora Hill

Date Sampled:

12/15-17/95

Project:

Powerine

Date Received:

12/18/95

Project Address:

Santa Fe Springs, CA

Date Analyzed:

12/18/95

Physical State:

Soil

Simulated Distillation (Carbon Chain ID)

Sample Spiked: MW106-80

Parameter	MS <u>Recovery (%)</u>	MSD Recovery (%)	RPD	Acceptability Range (%)
Diesel	81%	95%	15.8%	65 - 125

Sample Spiked: MW605-60

Parameter	MS <u>Recovery (%)</u>	MSD Recovery (%)	RPD	Acceptability Range (%)
Diesel	95%	91%	3.6%	65 - 125

Method Blank = Not Detected

MS = Matrix Spike

MSD = Matrix Spike Duplicate RPD = Relative Percent Difference

TESTING LABORATORIES

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client: Client Address: Powerine Oil Company 12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date: JEL Ref. No.: 12/19/95 A-2445

Client Ref. No.:

63-01

Attn:

Nora Hill

Date Sampled:

12/15-17/95

Powerine

Date Received: Date Analyzed: 12/18/95

Project: Project Address:

Santa Fe Springs, CA

Physical State:

12/18/95

Soil

EPA 8010 - Volatile Halogenated Hydrocarbons

Sample ID

Concentration (ug/Kg)

	C			
<u>Parameter</u>	MW605-10	MW605-60	MW605-70	MW107-10
Dichlorodifluoromethane	ND	ND	ND	ND
Chloromethane	ND	ND	ND	ND
Vinyl Chloride	ND	ND	ND	ND
Bromomethane	ND	ND .	ND	ND
Chloroethane	ND	ND	ND	ND
Trichlorofluoromethane	ND	ND	ND	ND
1,1-Dichloroethylene	ND	ND	ND	ND
Methylene Chloride	ND	ND	ND	ND
t-1,2-Dichloroethylene	ND	ND	ND	ND
1,1-Dichloroethane	ND	ND	ND	ND
c-1,2-Dichloroethylene	ND	ND	ND	ND
Chloroform	ND	ND	ND	ND
1,1,1-Trichloroethane	ND	ND	ND	ND
Carbon Tetrachloride	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND
Trichloroethylene	ND	ND	ND	ND
1,2-Dichloropropane	ND	ND	ND	ND
Bromodichloromethane	ND	ND	ND	ND
c-1,3-Dichloropropylene	ND	ND	ND	ND
t-1,3-Dichloropropylene	ND	ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND
Dibromochloromethane	ND	ND	ND	ND
Chlorobenzene	ND	ND	ND	ND
Tetrachloroethylene	ND	ND	ND	ND
Bromoform	ND	ND	ND	ND
1,3-Dichlorobenzene	ND	ND	ND	ND
1,4-Dichlorobenzene	ND	ND	ND	ND
1,2-Dichlorobenzene	ND	ND	ND	ND
Reporting Limits:	1.0	1.0	0.1	1.0
Surrogate Recovery % #1	98	88	101	105
Surrogate Recovery % #2	102	65	103	107
Surrogate Recovery % #3 ND = Not Detected	103	67	116	119

TESTING LABORATORIES

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client: Client Address: Powerine Oil Company 12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date: JEL Ref. No.:

12/19/95 A-2445

Client Ref. No.:

63-01

Attn:

Project:

Nora Hill

Powerine

Project Address:

Santa Fe Springs, CA

Date Sampled: Date Received: 12/15-17/95 12/18/95

Date Analyzed:

12/18/95

Physical State:

Soil

EPA 8010 - Volatile Halogenated Hydrocarbons

Sample ID

	Concentration (ug/Kg)				
Parameter	MW107-30	MW107-70	MW106-10	MW106-60	
raiameter	<u> </u>	14144 107-70	WI W 100-10	IVI W 100-00	
Dichlorodifluoromethane	ND	ND	ND	ND	
Chioromethane	ND	ND	ND	ND	
Vinyl Chloride	ND	ND	ND	ND	
Bromomethane	ND	ND	ND	ND	
Chloroethane	ND	ND	ND	ND	
Trichlorofluoromethane	ND	ND	ND	ND	
1,1-Dichloroethylene	ND	ND	ND	ND	
Methylene Chloride	ND	ND ·	ND	ND	
t-1,2-Dichloroethylene	ND	ND	ND	ND	
1,1-Dichloroethane	ND	ND	ND	ND	
c-1,2-Dichloroethylene	ND	ND	ND	ND	
Chloroform	ND	ND	ND	ND	
1,1,1-Trichloroethane	ND	ND	ND	ND	
Carbon Tetrachloride	ND	ND	ND	ND	
1,2-Dichloroethane	ND	ND	ND	ND	
Trichloroethylene	ND	ND	ND	ND	
1,2-Dichloropropane	ND	ND	ND	ND	
Bromodichloromethane	ND	ND	ND	ND	
c-1,3-Dichloropropylene	ND	ND	ND	ND	
t-1,3-Dichloropropylene	ND	ND	ND	ND	
1,1,2-Trichloroethane	ND	ND	ND	ND	
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	
Dibromochloromethane	ND	ND	ND	ND	
Chlorobenzene	ND	ND	ND	ND	
Tetrachloroethylene	ND	ND	ND	ND	
Bromoform	ND	ND	ND	ND	
1,3-Dichlorobenzene	ND	ND	ND	ND	
1,4-Dichlorobenzene	ND	ND	ND	ND	
1,2-Dichlorobenzene	ND	ND	ND	ND	
Reporting Limits:	1.0	1.0	1.0	1.0	
Surrogate Recovery % #1	99	102	100	106	
Surrogate Recovery % #2	98	94	105	126	
Surrogate Recovery % #3 ND = Not Detected	109	90	101	138	

TESTING LABORATORIES

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

Powerine Oil Company

Report Date: JEL Ref. No.: 12/19/95

Client Address:

12354 Lakeland Road

A-2445

Santa Fe Springs, CA 90670

Client Ref. No.:

63-01

Attn:

Nora Hill

Date Sampled:

12/15-17/95

Project:

Powerine

Date Received:

12/18/95

Project Address:

Santa Fe Springs, CA

Date Analyzed:

12/18/95

Physical State:

Soil

EPA 8010 - Volatile Halogenated Hydrocarbons

Sample ID

Concentration (ug/Kg)

	Concentration (ug/kg)				
Parameter	MW106-80	MW105-10	MW105-60	MW105-70	
Dichlorodifluoromethane	ND	ND	ND	ND	
Chloromethane	ND	ND	ND	ND	
Vinyl Chloride	ND	ND	ND	ND	
Bromomethane	ND	ND	ND	ND	
Chloroethane	ND	ND	ND	ND	
Trichlorofluoromethane	ND	ND	ND	ND	
1,1-Dichloroethylene	ND	ND	ND	ND	
Methylene Chloride	ND	ND	ND	ND	
t-1,2-Dichloroethylene	ND	ND	ND	ND	
1,1-Dichloroethane	ND	ND	ND	ND	
c-1,2-Dichloroethylene	ND	ND	ND	ND	
Chloroform	ND	ND	ND	ND	
1,1,1-Trichloroethane	ND	ND	ND	ND	
Carbon Tetrachloride	ND	ND	ND	ND	
1,2-Dichloroethane	ND	ND	ND	ND	
Trichloroethylene	ND	ND	ND	ND	
1,2-Dichloropropane	ND	ND	ND	ND	
Bromodichloromethane	ND	ND	ND	ND	
c-1,3-Dichloropropylene	ND	ND	ND	ND	
t-1,3-Dichloropropylene	ND	ND	ND	ND	
1,1,2-Trichloroethane	ND	ND	ND	ND	
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	
Dibromochloromethane	ND	ND	ND	ND	
Chlorobenzene	ND	ND	ND	ND	
Tetrachloroethylene	ND	ND	ND	ND	
Bromoform	ND	ND	ND	ND	
1,3-Dichlorobenzene	ND	ND	ND	ND	
1,4-Dichlorobenzene	ND	ND	ND	ND	
1,2-Dichlorobenzene	ND	ND	ND	ND	
Reporting Limits:	1.0	1.0	1.0	1.0	
Surrogate Recovery % #1	89	113	100	125	
Surrogate Recovery % #2	86	119	93	147	
Surrogate Recovery % #3 ND = Not Detected	119	121	115	138	

TESTING LABORATORIES JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client:

Client Address:

Powerine Oil Company

12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date:

JEL Ref. No.:

12/19/95

A-2445

Client Ref. No.:

63-01

Attn:

Nora Hill

Date Sampled:

12/15-17/95

Project:

Powerine

Date Received: Date Analyzed: 12/18/95

Project Address:

Santa Fe Springs, CA

12/18/95

Physical State:

Soil

EPA 8010 - Volatile Halogenated Hydrocarbons

Sample Spiked: MW605-10

Parameter	MS Recovery	MSD Recovery	RPD	Acceptability Range (%)
1,1-DCE	91%	89%	2.0%	65 - 140
TCE	100%	98%	2.6%	65 - 140
CLBZ	112%	110%	1.4%	65 - 140

Method Blank = Not Detected

MS = Matrix Spike

MSD = Matrix Spike Duplicate **RPD** = Relative Percent Difference

TESTING LABORATORIES

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client: Client Address: Powerine Oil Company 12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date: JEL Ref. No.:

12/19/95

Client Ref. No.:

A-2445 63-01

Attn:

Nora Hill

Date Sampled: Date Received: 12/15-17/95

Project:

Powerine

Date Analyzed:

12/18/95

Project Address:

Santa Fe Springs, CA

Physical State:

12/18/95 Soil

Modified EPA 8015 - Volatile Hydrocarbons (Gasoline)

Sample ID	Concentration (mg/Kg)	Surrogate Recovery %	Reporting Limits (mg/Kg)
MW 605-10	ND	104	1.0
MW 605-60	ND	93	1.0
MW 605-70	ND	95	1.0
MW 107-10	ND	94	1.0
MW 107-30	ND	93	1.0
MW 107-70	ND	94	1.0
MW 106-10	ND	99	1.0
MW 106-60	ND	97	1.0
MW 106-80	4.2*	***	1.0
MW 105-10	ND	102	1.0
MW 105-60	ND	100	1.0
MW 105-70	ND	100	1.0

^{*} Hydrocarbons in the gasoline range are not typical of gasoline.

ND = Not Detected

TESTING LABORATORIES JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client: Client Address: Powerine Oil Company

12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date:

JEL Ref. No.:

12/19/95 A-2445

Client Ref. No.:

63-01

Attn:

Project:

Project Address:

Nora Hill

Powerine

Santa Fe Springs, CA

Date Sampled:

Date Received:

12/18/95 12/18/95

12/15-17/95

Date Analyzed: Physical State:

Soil

Modified EPA 8015 - Volatile Hydrocarbons (Gasoline)

Sample Spiked: MW 107-70

MS MSD Acceptability
Parameter Recovery (%) Recovery (%) RPD Range (%)

Gasoline 103% 106% 2.5% 65 - 125

Method Blank = Not Detected

MS

= Matrix Spike

MSD RPD Matrix Spike DuplicateRelative Percent Difference

TESTING LABORATORIES JONES ENVIRONMENTAL

LABORATORY REPORT

Client:
Client Address:

Powerine Oil Company 12354 Lakeland Rd.

Sante Fe Springs, CA 90670

Report Date:

12/20/95 A-2446

JEL Ref. No.: Client Ref. No.: A-2446 63-01

Attn:

Matt Winefield/Nora Hill

Date Sampled: Date Received: 12/18/95

Project:

Powerine Oil Co.

Date Analyzed:

12/18/95 12/18/95

Project Address:

Santa Fe Springs, CA

Physical State:

Soil/Water

ANALYSES REQUESTED

- 1. EPA 8020 Volatile Aromatic Hydrocarbons
- 2. EPA 8010 Volatile Halogenated Hydrocarbons
- 3. ATSM 2887
- Simulated Distillation

4. Mod 8015 Gasoline - Volatile Hydrocarbons

Approval:

Steve Jones, Ph.D. Laboratory Manager

TESTING LABORATORIES

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client: Client Address: Powerine Oil Company 12354 Lakeland Rd.

Sante Fe Springs, CA 90670

Report Date: JEL Ref. No.: 12/20/95 A-2446

Client Ref. No.:

63-01

Attn:

Matt Winefield/Nora Hill

Date Sampled:

12/18/95 12/18/95

Project:

Powerine Oil Co.

Date Received: Date Analyzed:

12/18/95

Project Address:

Santa Fe Springs, CA

Physical State:

Soil

EPA 8020 - Volatile Aromatic Hydrocarbons

	Concentration (ug/Kg)				Reporting	
Sample ID	<u>Benzene</u>	Toluene	Ethylbenzene	Xylenes	Limits (ug/Kg)	Surrogate Recovery %
MW604-10	ND	ND	ND	6.5	5.0	94
MW604-60	ND	ND	ND	14	5.0	94
MW604-80	ND	ND	ND	13	5.0	106

ND = Not Detected

TESTING LABORATORIES JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client: Client Address: Powerine Oil Company 12354 Lakeland Rd.

Sante Fe Springs, CA 90670

Report Date: JEL Ref. No.: Client Ref. No.:

12/20/95 A-2446 63-01

Attn:

Matt Winefield/Nora Hill

Date Sampled: Date Received: 12/18/95 12/18/95

Project:
Project Address:

Powerine Oil Co. Santa Fe Springs, CA Date Analyzed: Physical State:

12/18/95 Soil/Water

EPA 8020 - Volatile Aromatic Hydrocarbons

Sample Spiked: TB (A-2445) WATER

Parameter	MS Recovery (%)	MSD Recovery (%)	RPD	Acceptability Range (%)
Toluene	99%	96%	2.7%	65 - 125
o-Xylene	101%	100%	1.7%	65 - 125

Sample Spiked: MW107-70 (A-2445) SOIL

Parameter	MS Recovery (%)	MSD Recovery (%)	<u>RPD</u>	Acceptability Range (%)
Toluene	95%	96%	1.3%	65 - 125
o-Xylene	99%	102%	3.0%	65 - 125

Method Blank = Not Detected

MS = Matrix Spike

MSD = Matrix Spike Duplicate RPD = Relative Percent Difference

TESTING LABORATORIES JONES ENVIRONMENTAL

LABORATORY RESULTS

Client: Client Address: Powerine Oil Company 12354 Lakeland Rd.

Sante Fe Springs, CA 90670

Report Date: JEL Ref. No.: Client Ref. No.:

12/20/95 A-2446 63-01

Attn:

Matt Winefield/Nora Hill

Date Sampled: Date Received: 12/18/95 12/18/95

Project:

Powerine Oil Co. Santa Fe Springs, CA Date Analyzed:

12/18/95

Project Address:

Physical State:

Soil

Simulated Distillation (Carbon Chain ID)

Sample ID Concentration (mg/Kg)

Carbon Chain Range	MW 604-	MW604-60	MW604-80
	10		
C8-C9	ND	ND	ND
C10-C11	ND	ND	ND
C12-C13	ND	ND	ND
C14-C15	ND	ND	ND
C16-C17	ND	ND	ND
C18-C19	ND	ND	ND
C20-C23	ND	ND	ND
C24-C27	ND	ND	ND
C28-C31	ND	ND	ND
C32-C35	ND	ND	ND
C36-C39	ND	ND	ND
C40-C43	ND	ND	ND
C44+	ND	ND	ND
Total	ND	ND	ND
Reporting Limits	10	10	10
Surrogate Recovery %	103	111	106

ND = Not Detected

TESTING LABORATORIES JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client: Client Address: Powerine Oil Company

12354 Lakeland Rd.

Sante Fe Springs, CA 90670

Report Date: JEL Ref. No.:

12/20/95 A-2446

Client Ref. No.:

63-01

Attn:

Matt Winefield/Nora Hill

Date Sampled: Date Received: 12/18/95 12/18/95

Project:

Powerine Oil Co.

Date Analyzed:

12/18/95

Project Address:

Santa Fe Springs, CA

Physical State:

Soil/Water

Simulated Distillation (Carbon Chain ID)

Sample Spiked: TB (A-2445) WATER

Parameter	MS <u>Recovery (%)</u>	MSD <u>Recovery (%)</u>	RPD	Acceptability Range (%)
Diesel	83%	104%	18.4%	65 - 125

Sample Spiked: MW605-60 SOIL

<u>Parameter</u>	MS <u>Recovery (%)</u>	MSD Recovery (%)	RPD	Acceptability Range (%)
Diesel	94%	91%	3.6%	65 - 125

Method Blank = Not Detected

MS = Matrix Spike

= Matrix Spike Duplicate MSD = Relative Percent Difference RPD

TESTING LABORATORIES

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client: Client Address: Powerine Oil Company 12354 Lakeland Rd.

Sante Fe Springs, CA 90670

Report Date: JEL Ref. No.: 12/20/95 A-2446

Client Ref. No.:

63-01

Attn:

Matt Winefield/Nora Hill

Date Sampled: Date Received: 12/18/95

Project:

Powerine Oil Co.

Date Analyzed:

12/18/95 12/18/95

Project Address:

Santa Fe Springs, CA

Physical State:

Soil

EPA 8010 - Volatile Halogenated Hydrocarbons

Sample ID

centration (110/Kg)

	Concentration (ug/Kg)			
Parameter	MW604-10	MW604-60	MW604-80	
Dichlorodifluoromethane	ND	ND	ND	
Chloromethane	ND	ND	ND	
Vinyl Chloride	ND	ND	ND	
Bromomethane	ND	ND	ND	
Chloroethane	ND	ND	ND	
Trichlorofluoromethane	ND	ND	ND	
1,1-Dichloroethylene	ND	ND	ND	
Methylene Chloride	ND	ND	ND	
t-1,2-Dichloroethylene	ND	ND	ND	
1,1-Dichloroethane	ND	ND	ND	
c-1,2-Dichloroethylene	ND	ND	ND	
Chloroform	ND	ND	ND	
1,1,1-Trichloroethane	ND	ND	ND	
Carbon Tetrachloride	ND	ND	ND	
1,2-Dichloroethane	ND	ND	ND	
Trichloroethylene	ND	ND	ND	
1,2-Dichloropropane	ND	ND	ND	
Bromodichloromethane	ND	ND	ND	
c-1,3-Dichloropropylene	ND	ND	ND	
t-1,3-Dichloropropylene	ND	ND	ND	
1,1,2-Trichloroethane	ND	ND	ND	
1,1,2,2-Tetrachloroethane	ND	ND	ND	
Dibromochloromethane	ND	ND	ND	
Chlorobenzene	ND	ND	ND	
Tetrachloroethylene	ND	ND	ND	
Bromoform	ND	ND	ND	
1,3-Dichlorobenzene	ND	ND	ND	
1,4-Dichlorobenzene	ND	ND	ND	
1,2-Dichlorobenzene	ND	ND	ND	
Reporting Limits:	1.0	1.0	1.0	
Surrogate Recovery % #1	98	108	103	
Surrogate Recovery % #2	105	120	112	
Surrogate Recovery % #3	121	128	129	
ND = Not Detected				

TESTING LABORATORIES JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client: Client Address: Powerine Oil Company 12354 Lakeland Rd.

Sante Fe Springs, CA 90670

Report Date: JEL Ref. No.: Client Ref. No.:

12/20/95 A-2446 63-01

Attn:

Matt Winefield/Nora Hill

Date Sampled: Date Received:

12/18/95 12/18/95

Project:

Powerine Oil Co.

Date Analyzed:

12/18/95

Project Address:

Santa Fe Springs, CA

Physical State:

Soil/ Water

EPA 8010 - Volatile Halogenated Hydrocarbons

Sample Spiked: TB (A-2445) WATER

Parameter	MS <u>Recovery</u>	MSD <u>Recovery</u>	RPD	Acceptability Range (%)
1,1-DCE	89%	91%	2.2%	65 - 140
TCE	98%	101%	2.6%	65 - 14 0
CLBZ	108%	115%	6.5%	65 - 140

Sample Spiked: MW-605-10 (A-2445) SOIL

Parameter	MS <u>Recovery</u>	MSD <u>Recovery</u>	<u>RPD</u>	Acceptability Range (%)
1,1-DCE	91%	89%	2.0%	65 - 140
TCE	100%	98%	2.6%	65 - 140
CLBZ	112%	110%	1.4%	65 - 140

Method Blank = Not Detected

MS = Matrix Spike

MSD = Matrix Spike Duplicate RPD = Relative Percent Difference

TESTING LABORATORIES JONES ENVIRONMENTAL

LABORATORY RESULTS

Client: Client Address: Powerine Oil Company 12354 Lakeland Rd.

Sante Fe Springs, CA 90670

Report Date: JEL Ref. No.: 12/20/95

Client Ref. No.:

A-2446 63-01

Attn:

Matt Winefield/Nora Hill

Date Sampled: Date Received: 12/18/95

Project:

Powerine Oil Co.

Date Analyzed:

12/18/95

Project Address:

Santa Fe Springs, CA

12/18/95

Physical State:

Soil

Modified EPA 8015 - Volatile Hydrocarbons (Gasoline)

Sample ID	Concentration (mg/Kg)	Surrogate Recovery %	Reporting Limits (mg/Kg)
MW 604-10	ND	94	1.0
MW 604-60	1.3*	94	1.0
MW 604-80	ND	106	1.0

^{*} Hydrocarbons present in the gasoline range are not typical of gasoline.

ND = Not Detected

TESTING LABORATORIES JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client: Client Address: Powerine Oil Company

12354 Lakeland Rd.

Sante Fe Springs, CA 90670

Report Date:

JEL Ref. No.:

No.: A-2446

Client Ref. No.: 63-01

Attn:

Matt Winefield/Nora Hill

Date Sampled: Date Received: 12/18/95

12/20/95

Project:

Powerine Oil Co.

Date Analyzed:

12/18/95 12/18/95

Project Address:

Santa Fe Springs, CA

Physical State:

Soil/ Water

Modified EPA 8015 - Volatile Hydrocarbons (Gasoline)

WATER

Sample Spiked: TB

•

Parameter Recovery (%) Recovery (%) RPD Range (%)

Gasoline

107%

MS

106%

MSD

0.8%

65 - 125

Acceptability

SOIL

Sample Spiked: MW 107-70 (A-2445)

 MS
 MSD
 Acceptability

 Parameter
 Recovery (%)
 Recovery (%)
 RPD
 Range (%)

 Gasoline
 103%
 106%
 2.5%
 65 - 125

Method Blank = Not Detected

MS

= Matrix Spike

MSD

= Matrix Spike Duplicate

RPD

= Relative Percent Difference

TESTING LABORATORIES JONES ENVIRONMENTAL

LABORATORY REPORT

Client: Client Address: Powerine Oil Company

12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date:

JEL Ref. No.:

Client Ref. No.:

12/21/95

A-2450 63-01

Attn:

Matt Winefield

Date Sampled: Date Received:

12/19/95 12/19/95

Project:

Project Address:

Powerine

Santa Fe Springs, CA

Date Analyzed:

12/19/95

Physical State:

Soil/Water

ANALYSES REQUESTED

- 1. EPA 8020 - Volatile Aromatic Hydrocarbons
- 2. EPA 8010 - Volatile Halogenated Hydrocarbons
- 3. **ATSM 2887**
- Simulated Distillation

Mod 8015 Gasoline - Volatile Hydrocarbons

Approval:

Steve Jones, Ph.D. Laboratory Manager

TESTING LABORATORIES

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:
Client Address:

Powerine Oil Company 12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date: JEL Ref. No.:

Client Ref. No.:

12/21/95 A-2450 63-01

Attn:

Matt Winefield

Date Sampled: Date Received:

12/19/95 12/19/95

Project:

Powerine

Date Analyzed:

12/19/95

Project Address:

Santa Fe Springs, CA

Physical State:

Soil

EPA 8020 - Volatile Aromatic Hydrocarbons

		Concentration	(ug/Kg)		Reporting	_
Sample ID	<u>Benzene</u>	Toluene	Ethylbenzene	Xylenes	Limits (ug/Kg)	Surrogate Recovery %
MW603-10	ND	ND	ND	ND	5.0	85
MW603-20	ND	ND	ND	ND	5.0	92
MW603-70	ND	ND	ND	ND	5.0	93

ND = Not Detected

TESTING LABORATORIES JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client: Client Address: Powerine Oil Company

12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date:

JEL Ref. No.:

Client Ref. No.:

12/21/95

A-2450 63-01

Attn:

Matt Winefield

Date Sampled:

12/19/95

Project:

Powerine

Date Received:

12/19/95

Date Analyzed:

12/19/95

Project Address:

Santa Fe Springs, CA

Physical State:

Soil/Water

EPA 8020 - Volatile Aromatic Hydrocarbons

Sample Spiked: UST-2A (A2452)

Parameter	MS Recovery (%)	MSD Recovery (%)	RPD	Acceptability Range (%)
Toluene	115%	115%	0.0%	65 - 125
o-Xylene	110%	111%	0.2%	65 - 125

Sample Spiked: CLEAN WATER

<u>Parameter</u>	MS Recovery (%)	MSD Recovery (%)	RPD	Acceptability Range (%)
Toluene	96%	96%	0.2%	65 - 125
o-Xylene	96%	102%	6.6%	65 - 125

Method Blank = Not Detected

MS = Matrix Spike

= Matrix Spike Duplicate MSD RPD = Relative Percent Difference

TESTING LABORATORIES

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client: Client Address: Powerine Oil Company 12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date: JEL Ref. No.:

12/21/95 A-2450

Client Ref. No.:

63-01

Attn:

Matt Winefield

Date Sampled: Date Received: 12/19/95 12/19/95

Project: Project Address: Powerine

Santa Fe Springs, CA

Date Analyzed: Physical State:

12/19/95 Soil

EPA 8010 - Volatile Halogenated Hydrocarbons

Sample ID

centration (ug/Kg)

	Concentration (ug/Kg)			
<u>Parameter</u>	MW603-10	MW603-20	MW603-70	
Dichlorodifluoromethane	ND	ND	ND	
Chloromethane	ND	ND	ND	
Vinyl Chloride	ND	ND	ND	
Bromomethane	ND	ND	ND	
Chloroethane	ND	ND	ND	
Trichlorofluoromethane	ND	ND	ND	
1,1-Dichloroethylene	ND	ND	ND	
Methylene Chloride	ND	ND	ND	
t-1,2-Dichloroethylene	ND	ND	ND	
1,1-Dichloroethane	ND	ND	ND	
c-1,2-Dichloroethylene	ND	ND	ND	
Chloroform	ND	ND	ND	
1,1,1-Trichloroethane	0.99	ND	1.0	
Carbon Tetrachloride	ND	ND	ND	
1,2-Dichloroethane	ND	ND	ND	
Trichloroethylene	ND	ND	ND	
1,2-Dichloropropane	ND	ND	ND	
Bromodichloromethane	ND	ND	ND	
c-1,3-Dichloropropylene	ND	ND	ND	
t-1,3-Dichloropropylene	ND	ND	ND	
1,1,2-Trichloroethane	ND	ND	ND	
1,1,2,2-Tetrachloroethane	ND	ND	ND	
Dibromochloromethane	ND	ND	ND	
Chlorobenzene	ND	ND	ND	
Tetrachloroethylene	ND	ND	ND	
Bromoform	ND	ND	ND	
1,3-Dichlorobenzene	ND	ND	ND	
1,4-Dichlorobenzene	ND	ND	ND	
1,2-Dichlorobenzene	ND	ND	ND	
Reporting Limits:	1.0	1.0	1.0	
Surrogate Recovery % #1	122	140	134	
Surrogate Recovery % #2	136	158	157	
Surrogate Recovery % #3	114	124	122	
ND = Not Detected				

TESTING LABORATORIES JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client: Client Address: Powerine Oil Company

12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date: JEL Ref. No.:

12/21/95 A-2450

Client Ref. No.:

63-01

Attn:

Matt Winefield

Date Sampled:

12/19/95

Project:

Powerine

Date Received:

12/19/95

Project Address:

Date Analyzed:

12/19/95

Santa Fe Springs, CA

Physical State:

Soil/Water

EPA 8010 - Volatile Halogenated Hydrocarbons

Sample Spiked: MW603-10 (SOIL)

<u>Parameter</u>	MS Recovery	MSD <u>Recovery</u>	RPD	Acceptability Range (%)
1,1-DCE	101%	106%	4.6%	65 - 140
TCE	98%	102%	3.3%	65 - 140
CLBZ	85%	85%	0.68%	65 - 140

Sample Spiked: MW604 (WATER)

MS Parameter Recovery		MSD Recovery	RPD	Acceptability Range (%)
1,1-DCE	103%	105%	0.4%	65 - 125
TCE	104%	104%	0.36%	65 - 125
CLBZ	95%	96%	1.3%	65 - 125

Method Blank = Not Detected

MS = Matrix Spike

MSD = Matrix Spike Duplicate = Relative Percent Difference **RPD**

TESTING LABORATORIES JONES ENVIRONMENTAL

LABORATORY RESULTS

Client: Client Address:

Project Address:

Powerine Oil Company 12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date: JEL Ref. No.:

12/21/95 A-2450

Client Ref. No.:

63-01

Attn:

Matt Winefield

Date Sampled:

12/19/95

Project:

Powerine

Santa Fe Springs, CA

Date Received: Date Analyzed:

12/19/95 12/19/95

Physical State:

Soil

Modified EPA 8015 - Volatile Hydrocarbons (Gasoline)

Sample ID	Concentration (mg/Kg)	Surrogate Recovery %	Reporting Limits (mg/Kg)
MW 603-10	ND	85	1.0
MW 603-20	ND	92	1.0
MW 603-70	ND	93	1.0

ND = Not Detected

TESTING LABORATORIES JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client:

Powerine Oil Company

Client Address:

12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date:

JEL Ref. No.:

Client Ref. No.:

12/21/95

A-2450

63-01

Attn:

Matt Winefield

Date Sampled:

12/19/95

Project:

Powerine

Date Received: Date Analyzed: 12/19/95

Project Address:

Santa Fe Springs, CA

Physical State:

<u>RPD</u>

1.2%

12/19/95 Soil/Water

Modified EPA 8015 - Volatile Hydrocarbons (Gasoline)

SOIL

Sample Spiked: UST-2A (A-2452)

MS MSD **Parameter** Recovery (%) Recovery (%)

Gasoline 98% 100% Acceptability Range (%)

65 - 125

WATER

Sample Spiked: Clean Water

Acceptability MS MSD RPD Range (%) Parameter Recovery (%) Recovery (%)

Gasoline 104% 107% 3.6% 65 - 125

Method Blank = Not Detected

MS = Matrix Spike

MSD = Matrix Spike Duplicate RPD = Relative Percent Difference

TESTING LABORATORIES JONES ENVIRONMENTAL

LABORATORY RESULTS

Client: Client Address: Powerine Oil Company 12354 Lakeland Road Santa Fe Springs, CA 90670

Report Date: JEL Ref. No.: Client Ref. No.:

12/21/95 A-2450 63-01

Attn:

Matt Winefield

Date Sampled:

12/19/95

Project:

Powerine

Date Received: Date Analyzed: 12/19/95

Physical State:

12/19/95

Project Address:

Santa Fe Springs, CA

Soil

Simulated Distillation (Carbon Chain ID)

Sample ID Concentration (mg/Kg)

Carbon Chain Range	MW603-10	MW 603- 20	MW 603- 70
C8-C9	ND	ND	ND
C10-C11	ND	ND	ND
C12-C13	ND	ND	ND
C14-C15	ND	ND	ND
C16-C17	ND	ND	ND
C18-C19	ND	ND	ND
C20-C23	ND	ND	ND
C24-C27	ND	ND	ND
C28-C31	ND	ND	ND
C32-C35	ND	ND	ND
C36-C39	ND	ND	ND
C40-C43	ND	ND	ND
C44+	ND	ND	ND
Total	ND	ND	ND
Reporting Limits	10	10	10
Surrogate Recovery %	103	107	116

ND = Not Detected

TESTING LABORATORIES JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client: Client Address: Powerine Oil Company

12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date:

JEL Ref. No.:

Client Ref. No.:

12/21/95

A-2450 63-01

Attn:

Matt Winefield

Date Sampled: Date Received: 12/19/95

Project:

Project Address:

Powerine

Santa Fe Springs, CA

Date Analyzed:

12/19/95 12/19/95

Physical State:

Soil/Water

Simulated Distillation (Carbon Chain ID)

WATER

Sample Spiked: MW 206 (A-2438)

Parameter

MS

MSD Recovery (%)

RPD

Acceptability

Range (%)

Diesel

101%

Recovery (%)

97%

4.1%

65 - 125

SOIL

Sample Spiked: MW 605-60

Parameter

MS Recovery (%) MSD Recovery (%)

RPD

Acceptability Range (%)

Diesel

94%

91%

3.6%

65 - 125

Method Blank = Not Detected

MS

= Matrix Spike

MSD RPD

= Matrix Spike Duplicate

= Relative Percent Difference

Page 1
TOTAL CONCENTRATIONS

(California Code of Regulations, Title 22, Section 66261)

JONES ENVIRONMENTAL LABORATORIES

P.O. BOX 5387

FULLERTON, CA 92635

714-449-9937

Date Reported: 12/26/95 Date Received: 12/21/95

Laboratory No.: 95-15115-10

Sample Description: POWERINE/TRIHYDRO JEL PROJ. #A2445: MW-105 10'

Sampling Date/Time: 12/19/95 @ 03:50PM

Title 22 Waste Type: Type i: Millable Solid - No Free Liquid

					Regul Crit	
<u>Constituents</u>	Sample Results	<u>Units</u>	Method <u>P.Q.L.</u>	Method	STLC mg/L	TTLC mq/kg
Lead	4.9	mg/kg	2.5	SW-6010	5.0	1000.

Comment: All above constituents are reported on an as received (wet) sample basis.

Results reported represent totals (TTLC) as sample subjected to appropriate

techniques to determine total levels.

P.Q.L. = Practical Quantitation Limit (refers to the least amount of analyte

quantifiable based on sample size used and analytical technique employed).

STLC = Soluble Threshold Limit Concentration

TTLC = Total Threshold Limit Concentration

REFERENCES:

Dan Schultz

Page 1.

TOTAL CONCENTRATIONS

(California Code of Regulations, Title 22, Section 66261)

JONES ENVIRONMENTAL LABORATORIES

P.O. BOX 5387

FULLERTON, CA 92635

714-449-9937

Date Reported: 12/26/95

Date Received: 12/21/95

Laboratory No.: 95-15115-11

Sample Description: POWERINE/TRIHYDRO JEL PROJ. #A2445: MW-105 60'

Sampling Date/Time: 12/19/95 @ 03:50PM

Title 22 Waste Type: Type i: Millable Solid - No Free Liquid

					Regula Crite	
Constituents	Sample Results	<u>Units</u>	Method P.O.L.	Method	STLC mg/L	TTLC mg/kg
Lead	None Detected	mg/kg	2.5	SW-6010	5.0	1000.

Comment: All above constituents are reported on an as received (wet) sample basis.

Results reported represent totals (TTLC) as sample subjected to appropriate

techniques to determine total levels.

P.Q.L. = Practical Quantitation Limit (refers to the least amount of analyte

quantifiable based on sample size used and analytical technique employed).

STLC Soluble Threshold Limit Concentration

TTLC Total Threshold Limit Concentration

REFERENCES:

SW = "Test Methods for Evaluating Solid Wastes Physical/Chemical Methods", EPA-SW-846, September, 1986.

Dan Schultz

Page 1

TOTAL CONCENTRATIONS (California Code of Regulations, Title 22, Section 66261)

JONES ENVIRONMENTAL LABORATORIES

P.O. BOX 5387

FULLERTON, CA 92635

714-449-9937

Date Reported: 12/26/95

Date Received: 12/21/95

Laboratory No.: 95-15115-12

Sample Description: POWERINE/TRIHYDRO JEL PROJ. #A2445: MW-105 70'

Sampling Date/Time: 12/19/95 @ 03:50PM

Title 22 Waste Type: Type i: Millable Solid - No Free Liquid

					Regul Crit	
Constituents	Sample Results	<u>Units</u>	Method P.O.L.	Method	STLC mg/L	TTLC mg/kg
Lead	None Detected	mg/kg	2.5	SW-6010	5.0	1000.

Comment: All above constituents are reported on an as received (wet) sample basis.

Results reported represent totals (TTLC) as sample subjected to appropriate techniques to determine total levels.

P.Q.L. = Practical Quantitation Limit (refers to the least amount of analyte quantifiable based on sample size used and analytical technique employed).

STLC = Soluble Threshold Limit Concentration
TTLC = Total Threshold Limit Concentration

REFERENCES:

Dan Schultz Laboratory Director

Page 1

TOTAL CONCENTRATIONS (California Code of Regulations, Title 22, Section 66261)

JONES ENVIRONMENTAL LABORATORIES

P.O. BOX 5387

FULLERTON, CA 92635

714-449-9937

Date Reported: 12/26/95

Date Received: 12/21/95

Laboratory No.: 95-15115-7

Sample Description: POWERINE/TRIHYDRO JEL PROJ. #A2445: MW-106 10'

Sampling Date/Time: 12/19/95 @ 03:50PM

Title 22 Waste Type: Type i: Millable Solid - No Free Liquid

					Regula Crite	-
Constituents	Sample Results	<u>Units</u>	Method P.O.L. M	Method	STLC mq/L	TTLC mq/kg
Lead	4.1	mg/kg	2.5	SW-6010	5.0	1000.

Comment: All above constituents are reported on an as received (wet) sample basis.

Results reported represent totals (TTLC) as sample subjected to appropriate

techniques to determine total levels.

P.Q.L. = Practical Quantitation Limit (refers to the least amount of analyte

quantifiable based on sample size used and analytical technique employed).

STLC = Soluble Threshold Limit Concentration
TTLC = Total Threshold Limit Concentration

REFERENCES:

Dan Schultz

Page TOTAL CONCENTRATIONS

(California Code of Regulations, Title 22, Section 66261)

JONES ENVIRONMENTAL LABORATORIES

P.O. BOX 5387

FULLERTON, CA 92635

714-449-9937

Date Reported: 12/26/95

Date Received: 12/21/95

Laboratory No.: 95-15115-8

Sample Description: POWERINE/TRIHYDRO JEL PROJ. #A2445: MW-106 60'

Sampling Date/Time: 12/19/95 @ 03:50PM

Title 22 Waste Type: Type i: Millable Solid - No Free Liquid

					Regul Crit	atory eria
<u>Constituents</u>	Sample Results	<u>Units</u>	Method P.Q.L.	Method	STLC mg/L	TTLC mq/kq
Lead	4.9	mg/kg	2.5	SW-6010	5.0	1000.

Comment: All above constituents are reported on an as received (wet) sample basis. Results reported represent totals (TTLC) as sample subjected to appropriate techniques to determine total levels.

Practical Quantitation Limit (refers to the least amount of analyte P.Q.L. = quantifiable based on sample size used and analytical technique employed).

Soluble Threshold Limit Concentration

STLC TTLC = Total Threshold Limit Concentration

REFERENCES:

SW = "Test Methods for Evaluating Solid Wastes Physical/Chemical Methods", EPA-SW-846, September, 1986.

Dan Schultz

Page

TOTAL CONCENTRATIONS (California Code of Regulations, Title 22, Section 66261)

JONES ENVIRONMENTAL LABORATORIES

P.O. BOX 5387

FULLERTON, CA 92635

714-449-9937

Date Reported: 12/26/95

Date Received: 12/21/95

Laboratory No.: 95-15115-9

Sample Description: POWERINE/TRIHYDRO JEL PROJ. #A2445: MW-106 80'

Sampling Date/Time: 12/19/95 @ 03:50PM

Title 22 Waste Type: Type i: Millable Solid - No Free Liquid

					Regul Crit	
Constituents	Sample Results	<u>Units</u>	Method P.O.L.	Method	STLC mg/L	TTLC mg/kg
Lead	None Detected	mg/kg	2.5	SW-6010	5.0	1000.

Comment: All above constituents are reported on an as received (wet) sample basis. Results reported represent totals (TTLC) as sample subjected to appropriate

techniques to determine total levels.

P.Q.L. = Practical Quantitation Limit (refers to the least amount of analyte

quantifiable based on sample size used and analytical technique employed).

STLC Soluble Threshold Limit Concentration

Total Threshold Limit Concentration TTLC

REFERENCES:

SW = "Test Methods for Evaluating Solid Wastes Physical/Chemical Methods", EPA-SW-846, September, 1986.

Dan Schultz

TOTAL CONCENTRATIONS (California Code of Regulations, Title 22, Section 66261) Page 1

JONES ENVIRONMENTAL LABORATORIES

P.O. BOX 5387

FULLERTON, CA 92635 714-449-9937

Date Received: 12/21/95

Laboratory No.: 95-15115-4

Date Reported: 12/26/95

Sample Description: POWERINE/TRIHYDRO JEL PROJ. #A2445: MW-107 10'

Sampling Date/Time: 12/19/95 @ 03:50PM

Title 22 Waste Type: Type i: Millable Solid - No Free Liquid

					Regul Crit	atory eria
<u>Constituents</u>	Sample Results	<u>Units</u>	Method P.Q.L.	<u>Method</u>	STLC mq/L	TTLC mg/kg
Lead	2.8	mg/kg	2.5	SW-6010	5.0	1000.

All above constituents are reported on an as received (wet) sample basis. Results reported represent totals (TTLC) as sample subjected to appropriate

techniques to determine total levels.

P.Q.L. = Practical Quantitation Limit (refers to the least amount of analyte

quantifiable based on sample size used and analytical technique employed).

Soluble Threshold Limit Concentration STLC

= Total Threshold Limit Concentration TTLC

REFERENCES:

SW = "Test Methods for Evaluating Solid Wastes Physical/Chemical Methods", EPA-SW-846, September, 1986.

Dan Schultz

Page 1 TOTAL CONCENTRATIONS

(California Code of Regulations, Title 22, Section 66261)

JONES ENVIRONMENTAL LABORATORIES

P.O. BOX 5387

FULLERTON, CA 92635

714-449-9937

Date Reported: 12/26/95 Date Received: 12/21/95

Laboratory No.: 95-15115-5

POWERINE/TRIHYDRO JEL PROJ. #A2445: MW-107 30' Sample Description:

Sampling Date/Time: 12/19/95 @ 03:50PM

Title 22 Waste Type: Type i: Millable Solid - No Free Liquid

					Regul. Crit	-
Constituents	Sample Results	<u>Units</u>	Method P.O.L.	Method	STLC mg/L	TTLC mq/kq
Lead	None Detected	mg/kg	2.5	SW-6010	5.0	1000.

Comment: All above constituents are reported on an as received (wet) sample basis.

Results reported represent totals (TTLC) as sample subjected to appropriate

techniques to determine total levels.

P.Q.L. =Practical Quantitation Limit (refers to the least amount of analyte

quantifiable based on sample size used and analytical technique employed).

STLC Soluble Threshold Limit Concentration

TTLC Total Threshold Limit Concentration

REFERENCES:

SW = "Test Methods for Evaluating Solid Wastes Physical/Chemical Methods", EPA-SW-846, September, 1986.

Dan Schultz

Page TOTAL CONCENTRATIONS

(California Code of Regulations, Title 22, Section 66261)

JONES ENVIRONMENTAL LABORATORIES

P.O. BOX 5387

FULLERTON, CA 92635

714-449-9937

Date Reported: 12/26/95

Date Received: 12/21/95

Laboratory No.: 95-15115-6

1

Sample Description: POWERINE/TRIHYDRO JEL PROJ. #A2445: MW-107 70'

Sampling Date/Time: 12/19/95 @ 03:50PM

Title 22 Waste Type: Type i: Millable Solid - No Free Liquid

					Regulatory Criteria	
<u>Constituents</u>	Sample Results	<u>Units</u>	Method P.O.L.	Method	STLC mg/L	TTLC _mg/kg
Lead	None Detected	mg/kg	2.5	SW-6010	5.0	1000.

All above constituents are reported on an as received (wet) sample basis. Results reported represent totals (TTLC) as sample subjected to appropriate

techniques to determine total levels.

P.Q.L. = Practical Quantitation Limit (refers to the least amount of analyte

quantifiable based on sample size used and analytical technique employed).

Soluble Threshold Limit Concentration

Total Threshold Limit Concentration TTLC

REFERENCES:

SW = "Test Methods for Evaluating Solid Wastes Physical/Chemical Methods", EPA-SW-846, September, 1986.

Dan Schultz

Page
TOTAL CONCENTRATIONS

(California Code of Regulations, Title 22, Section 66261)

JONES ENVIRONMENTAL LABORATORIES

P.O. BOX 5387

FULLERTON, CA 92635

714-449-9937

Date Reported: 12/27/95

Date Received: 12/21/95

Laboratory No.: 95-15175-1

1

Sample Description: POWERINE: MW603-10

Sampling Date/Time: 12/19/95 @ 09:02AM

Title 22 Waste Type: Type i: Millable Solid - No Free Liquid

					Regulatory Criteria	
Constituents	Sample Results	<u>Units</u>	Method P.O.L.	Method	STLC mg/L	TTLC mg/kg
Lead	6.7	mg/kg	2.5	SW-6010	5.0	1000.

Comment: All above constituents are reported on an as received (wet) sample basis.

Results reported represent totals (TTLC) as sample subjected to appropriate

techniques to determine total levels.

P.Q.L. = Practical Quantitation Limit (refers to the least amount of analyte

quantifiable based on sample size used and analytical technique employed).

STLC = Soluble Threshold Limit Concentration

TTLC = Total Threshold Limit Concentration

REFERENCES:

Dan Schultz

Page
TOTAL CONCENTRATIONS

(California Code of Regulations, Title 22, Section 66261)

JONES ENVIRONMENTAL LABORATORIES

P.O. BOX 5387

FULLERTON, CA 92635

714-449-9937

Date Reported: 12/27/95

Date Received: 12/21/95

Laboratory No.: 95-15175-2

1

Sample Description: POWERINE: MW603-20

Sampling Date/Time: 12/19/95 @ 09:15AM

Title 22 Waste Type: Type i: Millable Solid - No Free Liquid

						Regulatory Criteria	
Constituents	Sample Results	<u>Units</u>	Method P.O.L.	<u>Method</u>	STLC mq/L	TTLC mg/kg	
Lead	5.5	mg/kg	2.5	SW-6010	5.0	1000.	

Comment: All above constituents are reported on an as received (wet) sample basis.

Results reported represent totals (TTLC) as sample subjected to appropriate

techniques to determine total levels.

P.Q.L. = Practical Quantitation Limit (refers to the least amount of analyte

quantifiable based on sample size used and analytical technique employed).

STLC = Soluble Threshold Limit Concentration

TTLC = Total Threshold Limit Concentration

REFERENCES:

Dan Schultz

1

TOTAL CONCENTRATIONS (California Code of Regulations, Title 22, Section 66261)

JONES ENVIRONMENTAL LABORATORIES

P.O. BOX 5387

FULLERTON, CA 92635

714-449-9937

Date Reported: 12/27/95 Date Received:

12/21/95 Laboratory No.: 95-15175-3

Sample Description: POWERINE: MW603-70

Sampling Date/Time: 12/19/95 @ 11:20AM

Title 22 Waste Type: Type i: Millable Solid - No Free Liquid

					Regul Crit	
Constituents	Sample Results	<u>Units</u>	Method P.O.L.	Method	STLC mq/L	TTLC mg/kg
Lead	6.2	mg/kg	2.5	SW-6010	5.0	1000.

Comment: All above constituents are reported on an as received (wet) sample basis.

Results reported represent totals (TTLC) as sample subjected to appropriate

techniques to determine total levels.

P.Q.L. = Practical Quantitation Limit (refers to the least amount of analyte

quantifiable based on sample size used and analytical technique employed).

STLC Soluble Threshold Limit Concentration

Total Threshold Limit Concentration TTLC

REFERENCES:

SW = "Test Methods for Evaluating Solid Wastes Physical/Chemical Methods", EPA-SW-846, September, 1986.

Dan Schultz

Page 1 TOTAL CONCENTRATIONS

Date Reported:

Date Received: 12/26/95 Laboratory No.: 95-15272-1

01/02/96

(California Code of Regulations, Title 22, Section 66261)

JONES ENVIRONMENTAL LABORATORIES

P.O. BOX 5387

FULLERTON, CA 92635

714-449-9937

Attn: MATT WINEFIELD

Sample Description: POWERINE SANTE FE SPRINGS JEL PROJ. #A-2446: MW604-10

Sampling Date/Time: 12/18/95 @ 10:36AM

Title 22 Waste Type: Type i: Millable Solid - No Free Liquid

					Regula Crit	
Constituents	Sample Results	<u>Units</u>	Method P.O.L.	Method	STLC mg/L	TTLC mg/kg
Lead	6.8	mg/kg	2.5	SW-6010	5.0	1000.

Comment: All above constituents are reported on an as received (wet) sample basis. Results reported represent totals (TTLC) as sample subjected to appropriate

techniques to determine total levels.

P.Q.L. = Practical Quantitation Limit (refers to the least amount of analyte

quantifiable based on sample size used and analytical technique employed).

STLC Soluble Threshold Limit Concentration = Total Threshold Limit Concentration TTLC

REFERENCES:

SW = "Test Methods for Evaluating Solid Wastes Physical/Chemical Methods", EPA-SW-846, September, 1986.

Dan Schultz

TOTAL CONCENTRATIONS (California Code of Regulations, Title 22, Section 66261)

JONES ENVIRONMENTAL LABORATORIES

P.O. BOX 5387

FULLERTON, CA 92635

Attn: MATT WINEFIELD

714-449-9937

Date Reported: 01/02/96

Date Received: 12/26/95

Laboratory No.: 95-15272-2

Sample Description: POWERINE SANTE FE SPRINGS JEL PROJ. #A-2446: MW604-60

Sampling Date/Time: 12/18/95 @ 11:25AM

Title 22 Waste Type: Type i: Millable Solid - No Free Liquid

						Regulatory Criteria		
Constituents	Sample Results	<u>Units</u>	Method P.O.L.	Method	STLC mq/L	TTLC mg/kg		
Lead	2.9	mg/kg	2.5	SW-6010	5.0	1000.		

Comment: All above constituents are reported on an as received (wet) sample basis. Results reported represent totals (TTLC) as sample subjected to appropriate

techniques to determine total levels.

P.Q.L. = Practical Quantitation Limit (refers to the least amount of analyte

quantifiable based on sample size used and analytical technique employed).

STLC Soluble Threshold Limit Concentration

TTLC Total Threshold Limit Concentration

REFERENCES:

SW = "Test Methods for Evaluating Solid Wastes Physical/Chemical Methods", EPA-SW-846, September, 1986.

Dan Schultz

TOTAL CONCENTRATIONS (California Code of Regulations, Title 22, Section 66261) Page 1

JONES ENVIRONMENTAL LABORATORIES

P.O. BOX 5387

FULLERTON, CA 92635 Attn: MATT WINEFIELD

714-449-9937

Date Reported: 01/02/96 Date Received: 12/26/95

Laboratory No.: 95-15272-3

Sample Description: POWERINE SANTE FE SPRINGS JEL PROJ. #A-2446: MW604-80

Sampling Date/Time: 12/18/95 @ 12:00PM

Title 22 Waste Type: Type i: Millable Solid - No Free Liquid

					Regulatory Criteria	
Constituents	Sample Results	<u>Units</u>	Method P.O.L.	Method	STLC mq/L	TTLC <u>mq/kq</u>
Lead	None Detected	mg/kg	2.5	SW-6010	5.0	1000.

Comment: All above constituents are reported on an as received (wet) sample basis. Results reported represent totals (TTLC) as sample subjected to appropriate techniques to determine total levels.

P.Q.L. = Practical Quantitation Limit (refers to the least amount of analyte

quantifiable based on sample size used and analytical technique employed).

Soluble Threshold Limit Concentration STLC TTLC = Total Threshold Limit Concentration

REFERENCES:

SW = "Test Methods for Evaluating Solid Wastes Physical/Chemical Methods", EPA-SW-846, September, 1986.

Dan Schultz

TOTAL CONCENTRATIONS (California Code of Regulations, Title 22, Section 66261)

JONES ENVIRONMENTAL LABORATORIES

P.O. BOX 5387

FULLERTON, CA 92635

714-449-9937

Date Reported: Date Received:

12/26/95 12/21/95

Laboratory No.: 95-15115-1

Sample Description: POWERINE/TRIHYDRO JEL PROJ. #A2445: MW-605 10'

Sampling Date/Time: 12/19/95 @ 03:50PM

Title 22 Waste Type: Type i: Millable Solid - No Free Liquid

					Regula Crite	
Constituents	Sample Results	<u>Units</u>	Method P.O.L.	Method	STLC mq/L	TTLC mq/kq
Lead	6.7	mg/kg	2.5	SW-6010	5.0	1000.

Comment: All above constituents are reported on an as received (wet) sample basis. Results reported represent totals (TTLC) as sample subjected to appropriate

techniques to determine total levels.

P.Q.L. = Practical Quantitation Limit (refers to the least amount of analyte

quantifiable based on sample size used and analytical technique employed).

Soluble Threshold Limit Concentration STLC

TTLC = Total Threshold Limit Concentration

REFERENCES:

SW = "Test Methods for Evaluating Solid Wastes Physical/Chemical Methods", EPA-SW-846, September, 1986.

Dan Schultz

TOTAL CONCENTRATIONS

(California Code of Regulations, Title 22, Section 66261)

JONES ENVIRONMENTAL LABORATORIES

P.O. BOX 5387

FULLERTON, CA 92635

714-449-9937

Date Reported: 12/26/95 Date Received: 12/21/95

Laboratory No.: 95-15115-2

Sample Description: POWERINE/TRIHYDRO JEL PROJ. #A2445: MW-605 60'

Sampling Date/Time: 12/19/95 @ 03:50PM

Title 22 Waste Type: Type i: Millable Solid - No Free Liquid

						atory eria
Constituents	Sample Results	Units	Method P.Q.L.	Method	STLC mq/L	TTLC mg/kg
Lead	5 . 4	mg/kg	2.5	SW-6010	5.0	1000.

Comment: All above constituents are reported on an as received (wet) sample basis.

Results reported represent totals (TTLC) as sample subjected to appropriate

techniques to determine total levels.

P.Q.L. = Practical Quantitation Limit (refers to the least amount of analyte quantifiable based on sample size used and analytical technique employed).

STLC = Soluble Threshold Limit Concentration

TTLC = Total Threshold Limit Concentration

REFERENCES:

Dan Schultz

TOTAL CONCENTRATIONS (California Code of Regulations, Title 22, Section 66261)

JONES ENVIRONMENTAL LABORATORIES

P.O. BOX 5387

FULLERTON, CA 92635

714-449-9937

Date Reported:

12/26/95

Date Received: 12/21/95

Laboratory No.: 95-15115-3

Sample Description: POWERINE/TRIHYDRO JEL PROJ. #A2445: MW-605 70'

Sampling Date/Time: 12/19/95 @ 03:50PM

Title 22 Waste Type: Type i: Millable Solid - No Free Liquid

					Regula Crite	
Constituents	Sample Results	<u>Units</u>	Method P.O.L.	Method	STLC mq/L	TTLC mg/kg
Lead	3.6	mg/kg	2.5	SW-6010	5.0	1000.

Comment: All above constituents are reported on an as received (wet) sample basis.

Results reported represent totals (TTLC) as sample subjected to appropriate

techniques to determine total levels.

P.Q.L. = Practical Quantitation Limit (refers to the least amount of analyte

quantifiable based on sample size used and analytical technique employed).

STLC = Soluble Threshold Limit Concentration

TTLC = Total Threshold Limit Concentration

REFERENCES:

Dan Schultz

TOTAL CONCENTRATIONS

Date Reported: 12/22/95 Date Received: 12/18/95

Laboratory No.: 95-14976-1

Page

1

(California Code of Regulations, Title 22, Section 66261)

JONES ENVIRONMENTAL LABORATORIES

P.O. BOX 5387

FULLERTON, CA 92635

Attn: NOVA HILL 714-449-9937

Sample Description: POWERINE JEL PROJ. #A-2439: MW606-10

Sampling Date/Time: 12/12/95

Title 22 Waste Type: Type i: Millable Solid - No Free Liquid

					Regul Crit	-
Constituents	Sample Results	<u>Units</u>	Method P.O.L.	Method	STLC mg/L	TTLC mg/kg
Lead	2.5	mg/kg	2.5	SW-6010	5.0	1000.

Comment: All above constituents are reported on an as received (wet) sample basis.

Results reported represent totals (TTLC) as sample subjected to appropriate

techniques to determine total levels.

P.Q.L. = Practical Quantitation Limit (refers to the least amount of analyte

quantifiable based on sample size used and analytical technique employed).

STLC = Soluble Threshold Limit Concentration

TTLC = Total Threshold Limit Concentration

REFERENCES:

SW = "Test Methods for Evaluating Solid Wastes Physical/Chemical Methods",

EPA-SW-846 September, 1986.

1 feet

Dan Schultz

1

TOTAL CONCENTRATIONS (California Code of Regulations, Title 22, Section 66261)

JONES ENVIRONMENTAL LABORATORIES

P.O. BOX 5387

FULLERTON, CA 92635

Attn: NOVA HILL

714-449-9937

Date Reported: 12/22/95 Date Received: 12/18/95

Laboratory No.: 95-14976-2

Sampling Date/Time: 12/12/95

Title 22 Waste Type: Type i: Millable Solid - No Free Liquid

Sample Description: POWERINE JEL PROJ. #A-2439: MW606-50

					Regulatory Criteria	
Constituents	Sample Results	<u>Units</u>	Method P.O.L.	Method	STLC mg/L	TTLC mg/kg
Lead	4.3	mg/kg	2.5	SW-6010	5.0	1000.

Comment: All above constituents are reported on an as received (wet) sample basis. Results reported represent totals (TTLC) as sample subjected to appropriate

techniques to determine total levels.

P.Q.L. = Practical Quantitation Limit (refers to the least amount of analyte

quantifiable based on sample size used and analytical technique employed).

Soluble Threshold Limit Concentration STLC

Total Threshold Limit Concentration TTLC

REFERENCES:

SW = "Test Methods for Evaluating Solid Wastes Physical/Chemical Methods", EPA-SW-846, September, 1986.

Dan Schultz

Page 1
TOTAL CONCENTRATIONS

Date Reported: 12/22/95

Date Received: 12/18/95

Laboratory No.: 95-14976-3

(California Code of Regulations, Title 22, Section 66261)

JONES ENVIRONMENTAL LABORATORIES

P.O. BOX 5387

FULLERTON, CA 92635

Attn: NOVA HILL 714-449-9937

ttn: NOVA HILL /14-449-993/

Sampling Date/Time: 12/12/95

Title 22 Waste Type: Type i: Millable Solid - No Free Liquid

Sample Description: POWERINE JEL PROJ. #A-2439: MW606-80

					Regul Crit	
Constituents	Sample Results	Units	Method P.O.L.	Method	STLC mg/L	TTLC _mq/kq
Lead	5.5	mg/kg	2.5	SW-6010	5.0	1000.

Comment: All above constituents are reported on an as received (wet) sample basis.

Results reported represent totals (TTLC) as sample subjected to appropriate techniques to determine total levels.

P.Q.L. = Practical Quantitation Limit (refers to the least amount of analyte quantifiable based on sample size used and analytical technique employed).

STLC = Soluble Threshold Limit Concentration
TTLC = Total Threshold Limit Concentration

REFERENCES:

SW = "Test Methods for Evaluating Solid Wastes Physical/Chemical Methods", EPA-SW-846, September, 1986.

Dan Schultz

Laboratory Director

floor

Date Reported: 12/22/95 Date Received: 12/18/95

Laboratory No.: 95-14976-4

TOTAL CONCENTRATIONS (California Code of Regulations, Title 22, Section 66261)

JONES ENVIRONMENTAL LABORATORIES

P.O. BOX 5387

FULLERTON, CA 92635

Attn: NOVA HILL

714-449-9937

Sample Description: POWERINE JEL PROJ. #A-2439: MW607-10

Sampling Date/Time: 12/12/95

Title 22 Waste Type: Type i: Millable Solid - No Free Liquid

					Regula Crite	
<u>Constituents</u>	Sample Results	<u>Units</u>	Method P.O.L.	Method	STLC mg/L	TTLC mg/kg
Lead	2.8	mg/kg	2.5	SW-6010	5.0	1000.

Comment: All above constituents are reported on an as received (wet) sample basis. Results reported represent totals (TTLC) as sample subjected to appropriate

techniques to determine total levels.

P.Q.L. = Practical Quantitation Limit (refers to the least amount of analyte

quantifiable based on sample size used and analytical technique employed).

STLC Soluble Threshold Limit Concentration

TTLC Total Threshold Limit Concentration

REFERENCES:

SW = "Test Methods for Evaluating Solid Wastes Physical/Chemical Methods", PPA-SW-846, September, 1986.

Dan Schultz

Page 1 TOTAL CONCENTRATIONS

> Date Reported: 12/22/95 Date Received: 12/18/95

Laboratory No.: 95-14976-5

(California Code of Regulations, Title 22, Section 66261)

JONES ENVIRONMENTAL LABORATORIES

P.O. BOX 5387

FULLERTON, CA 92635

Attn: NOVA HILL

714-449-9937

Sampling Date/Time: 12/12/95

Title 22 Waste Type: Type i: Millable Solid - No Free Liquid

Sample Description: POWERINE JEL PROJ. #A-2439: MW607-70

					Regul Crit	
<u>Constituents</u>	Sample Results	<u>Units</u>	Method P.O.L.	Method	STLC mg/L	TTLC mg/kg
Lead	2.8	mg/kg	2.5	SW-6010	5.0	1000.

Comment: All above constituents are reported on an as received (wet) sample basis.

Results reported represent totals (TTLC) as sample subjected to appropriate

techniques to determine total levels.

Practical Quantitation Limit (refers to the least amount of analyte

quantifiable based on sample size used and analytical technique employed).

Soluble Threshold Limit Concentration STLC

Total Threshold Limit Concentration TTLC

REFERENCES:

SW = "Test Methods for Evaluating Solid Wastes Physical/Chemical Methods",

EPA-SW-846, September, 1986.

Dan Schultz

Date Reported: 12/22/95 Date Received: 12/18/95

Laboratory No.: 95-14976-6

1

TOTAL CONCENTRATIONS (California Code of Regulations, Title 22, Section 66261)

JONES ENVIRONMENTAL LABORATORIES

P.O. BOX 5387

FULLERTON, CA 92635

Attn: NOVA HILL

714-449-9937

Sample Description: POWERINE JEL PROJ. #A-2439: MW607-80

Sampling Date/Time: 12/12/95

Title 22 Waste Type: Type i: Millable Solid - No Free Liquid

					Regulatory Criteria	
Constituents	Sample Results	<u>Units</u>	Method P.O.L.	Method	STLC mg/L	TTLC mg/kg
Lead	2.7	mg/kg	2.5	SW-6010	5.0	1000.

Comment: All above constituents are reported on an as received (wet) sample basis. Results reported represent totals (TTLC) as sample subjected to appropriate techniques to determine total levels.

P.Q.L. = Practical Quantitation Limit (refers to the least amount of analyte quantifiable based on sample size used and analytical technique employed).

STLC Soluble Threshold Limit Concentration TTLC Total Threshold Limit Concentration

REFERENCES:

SW = "Test Methods for Evaluating Solid Wastes Physical/Chemical Methods", **PPA-SW-846, September, 1986.**

Dan Schultz

TESTING LABORATORIES JONES ENVIRONMENTAL

LABORATORY REPORT

Client: Client Address: Powerine Oil Company

12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date:

12/15/16

JEL Ref. No.: Client Ref. No.: A-2438 63-01

Attn:

Matt Winefield

Date Sampled: Date Received: 12/12/95 12/14/95

Project:

Powerine Oil Co.

Date Analyzed:

12/14/95

Project Address:

Santa Fe Springs, CA

Physical State:

Water

ANALYSES REQUESTED

- EPA 8020 Volatile Aromatic Hydrocarbons 1.
- 2. EPA 8010 - Volatile Halogenated Hydrocarbons
- ASTM 2887 Simulated Distillation 3.
- 4. Mod 8015 Gasoline - Volatile Hydrocarbons

Approval:

Steve Jones, Ph.D. Laboratory Manager

TESTING LABORATORIES

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client: Client Address: Powerine Oil Company

12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date:

JEL Ref. No.:

12/15/16 A-2438

Client Ref. No.:

63-01

Attn:

Matt Winefield

Date Sampled:

12/12/95

Project:

Project Address:

Powerine Oil Co.

Santa Fe Springs, CA

Date Received: Date Analyzed:

12/14/95 12/14/95

Physical State:

Water

EPA 8020 - Volatile Aromatic Hydrocarbons

	Concentration (ug/L)				Reporting Limits	Surrogata
Sample ID	Benzene	Toluene	Ethylbenzene	Xylenes	(ug/L)	Surrogate Recovery %
MW104	3.0	0.6	ND	ND	0.5	99
MW205	110	1.3	18	37	0.5	123
MW203	37	1.0	12	1.9	0.5	112
MW101	90	5.9	6.4	2.9	1.0	116
MW202	330	21	51	74	2.5	258
MW503	340	79	190	200	2.5	170
MW201	440	42	120	94	2.5	146
MW103	410	4.1	2.6	7.7	2.5	99
MW501	1600	100	880	2200	10	190
MW206	110	16	32	100	15	107
MW204	880	670	240	860	2.5	148
EQUIP BLK	0.6	ND	ND	1.3	0.5	97
MW504	2700	730	800	2600	50	144
MW502	6900	950	3300	8500	50	134
MW600	23000	40000	18000	101000	500	130
MW601	18000	17000	130000	100000	500	163
TB	20	44	18	100	0.5	136
TB #2	ND	ND	ND	ND	0.5	91

ND = Not Detected

TESTING LABORATORIES

JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client: Client Address: Powerine Oil Company 12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date: JEL Ref. No.:

12/15/16 A-2438

Client Ref. No.:

63-01

Attn:

Matt Winefield

Date Sampled:

12/12/95

Project:

Powerine Oil Co.

Date Received: Date Analyzed:

12/14/95 12/14/95

Project Address:

Santa Fe Springs, CA

Physical State:

Water

EPA 8020 - Volatile Aromatic Hydrocarbons

Sample Spiked: MW104

Parameter	MS Recovery (%)	MSD Recovery (%)	RPD	Acceptability Range (%)
Toluene	104%	121%	14.6%	65 - 125
o-Xylene	75%	107%	35%	65 - 125

Sample Spiked: TB #2

Parameter	MS Recovery (%)	MSD Recovery (%)	RPD	Acceptability Range (%)
Toluene	99%	96%	2.7%	65 - 125
o-Xylene	101%	100%	1.7%	65 - 125

Method Blank = Not Detected

MS = Matrix Spike

MSD = Matrix Spike Duplicate = Relative Percent Difference RPD

TESTING LABORATORIES

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

Powerine Oil Company 12354 Lakeland Road Report Date: JEL Ref. No.: 12/15/16 A-2438

Client Address:

Santa Fe Springs, CA 90670

Client Ref. No.:

63-01

Attn:

Matt Winefield

Date Sampled: Date Received:

12/12/95 12/14/95

Project:

Powerine Oil Co.

Date Analyzed:

12/14/95

Project Address:

Santa Fe Springs, CA

Physical State:

Water

EPA 8010 - Volatile Halogenated Hydrocarbons

Sample ID

•	•	Concentration (ug/I	ر.)	
<u>Parameter</u>	<u>MW104</u>	MW205	MW203	MW101
District difference of the con-	MD	NID	ND	ND
Dichlorodifluoromethane	ND	ND		
Chloromethane	ND	ND	ND	ND
Vinyl Chloride	ND	ND	1.4	ND
Bromomethane	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND
Trichlorofluoromethane	ND	ND	ND	ND
1,1-Dichloroethylene	ND	22	ND	67
Methylene Chloride	ND	0.58	ND	1.3
t-1,2-Dichloroethylene	ND	5.3	4.5	0.97
1,1-Dichloroethane	ND	7.3	0.61	9.3
c-1,2-Dichloroethylene	ND	51	40	45
Chloroform	ND	ND	ND	ND
1,1,1-Trichloroethane	ND	ND	ND	ND
Carbon Tetrachloride	ND	ND	ND	ND
1,2-Dichloroethane	ND	2.0	ND	1.8
Trichloroethylene	ND	80	ND	100
1,2-Dichloropropane	ND	ND	ND	ND
Bromodichloromethane	ND	ND	ND	ND
c-1,3-Dichloropropylene	ND	ND	ND	ND
t-1,3-Dichloropropylene	ND	ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND
Dibromochloromethane	ND	ND	ND	ND
Chlorobenzene	ND	ND	ND	ND
Tetrachloroethylene	ND	2.8	ND	36
Bromoform	ND	ND	ND	ND
1,3-Dichlorobenzene	ND	ND	ND	ND
1,4-Dichlorobenzene	ND	ND	ND	. ND
1,2-Dichlorobenzene	ND	ND	ND	ND
Reporting Limits:	0.5	0.5	0.5	0.5
Surrogate Recovery % #1	96	98	94	93
Surrogate Recovery % #2	102	87	86	84
Surrogate Recovery % #3 ND = Not Detected	99	96	89	85

TESTING LABORATORIES

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:
Client Address:

Powerine Oil Company 12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date: JEL Ref. No.:

Client Ref. No.:

12/15/16 A-2438 63-01

Attn:

Matt Winefield

Date Sampled: Date Received: 12/12/95 12/14/95

Project:

Powerine Oil Co.

Date Analyzed:

12/14/95

Project Address:

Santa Fe Springs, CA

Physical State:

Water

EPA 8010 - Volatile Halogenated Hydrocarbons

Sample ID Concentration (ug/L)

	C			
<u>Parameter</u>	<u>MW202</u>	MW503	MW201	MW103
Dichlorodifluoromethane	ND	ND	ND	ND
Chloromethane	ND	ND	ND	ND
Vinyl Chloride	1.5	1.4	ND	2.5
Bromomethane	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND
Trichlorofluoromethane	ND	ND	ND	ND
1,1-Dichloroethylene	1.3	120	87	ND
Methylene Chloride	ND	1.0	0.69	ND
t-1,2-Dichloroethylene	1.0	1.2	1.7	ND
1,1-Dichloroethane	1.8	15	9.4	2.2
c-1,2-Dichloroethylene	13	38	44	ND
Chloroform	ND	ND	ND	ND
1,1,1-Trichloroethane	ND	ND	1.8	ND
Carbon Tetrachloride	ND	ND	ND	ND
1,2-Dichloroethane	ND	6.5	4.4	2.1
Trichloroethylene	1.3	85	110	ND
1,2-Dichloropropane	1.1	0.72	0.81	ND
Bromodichloromethane	ND	ND	ND	ND
c-1,3-Dichloropropylene	ND	ND	ND	ND
t-1,3-Dichloropropylene	ND	ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND
Dibromochloromethane	ND	ND	ND	ND
Chlorobenzene	ND	ND	ND	ND
Tetrachloroethylene	ND	ND	58	ND
Bromoform	ND	ND	ND	ND
1,3-Dichlorobenzene	ND	ND	ND	ND
1,4-Dichlorobenzene	ND	ND	ND	ND
1,2-Dichlorobenzene	ND	ND	ND	ND
Reporting Limits:	0.5	0.5	0.5	0.5
Surrogate Recovery % #1	90	108	112	99
Surrogate Recovery % #2	98	111	116	112
Surrogate Recovery % #3 ND = Not Detected	102	106	107	108

TESTING LABORATORIES

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

Powerine Oil Company

Report Date: JEL Ref. No.: 12/15/16 A-2438

Client Address:

12354 Lakeland Road Santa Fe Springs, CA 90670

Client Ref. No.:

63-01

Attn:

Matt Winefield

Date Sampled: Date Received: 12/12/95 12/14/95

Project:

Powerine Oil Co.

Date Analyzed: Physical State:

12/14/95 Water

Project Address:

Santa Fe Springs, CA

EPA 8010 - Volatile Halogenated Hydrocarbons

Sample ID Concentration (ug/L)

	Concentration (ug/L)				
Parameter	<u>MW501</u>	<u>MW206</u>	MW204	EQUIP BLK	
Dichlorodifluoromethane	ND	ND	ND	ND	
Chloromethane	ND	ND	ND	ND	
Vinyl Chloride	ND	ND	4.7	ND	
Bromomethane	ND	ND	ND	ND	
Chloroethane	ND	ND	ND	ND	
Trichlorofluoromethane	ND	ND	ND	ND	
1,1-Dichloroethylene	1.0	ND	ND	ND	
Methylene Chloride	1.0	ND	ND	ND	
t-1,2-Dichloroethylene	ND	ND	ND	ND	
1,1-Dichloroethane	1.6	ND	5.4	ND	
c-1,2-Dichloroethylene	8.5	ND	4.7	ND	
Chloroform	ND	ND	ND	ND	
1,1,1-Trichloroethane	3.7	ND	ND	0.95	
Carbon Tetrachloride	ND	ND	ND	ND	
1,2-Dichloroethane	3.2	ND	8.2	ND	
Trichloroethylene	ND	ND	ND	ND	
1,2-Dichloropropane	1.3	ND	ND	ND	
Bromodichloromethane	ND	ND	ND	ND	
c-1,3-Dichloropropylene	ND	ND	ND	ND	
t-1,3-Dichloropropylene	ND	ND	ND	ND	
1,1,2-Trichloroethane	ND	ND	ND	ND	
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	
Dibromochloromethane	ND	ND	ND	ND	
Chlorobenzene	ND	ND	ND	ND	
Tetrachloroethylene	ND	ND	ND	ND	
Bromoform	ND	ND	ND	ND	
1,3-Dichlorobenzene	ND	ND	ND	ND	
1,4-Dichlorobenzene	ND	ND	ND	ND	
1,2-Dichlorobenzene	ND	ND	ND	ND	
Reporting Limits:	2.5	0.5	0.5	0.5	
Surrogate Recovery % #1	102	105	104	100	
Surrogate Recovery % #2	108	108	105	105	
Surrogate Recovery % #3 ND = Not Detected	106	109	107	99	

TESTING LABORATORIES

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

Powerine Oil Company

Report Date: JEL Ref. No.: 12/15/16

Client Address:

12354 Lakeland Road Santa Fe Springs, CA 90670

Client Ref. No.:

A-2438 63-01

Attn:

Matt Winefield

Date Sampled:

12/12/95

Project:

Powerine Oil Co.

Date Received: Date Analyzed: 12/14/95 12/14/95

Project Address:

Santa Fe Springs, CA

Physical State:

Water

EPA 8010 - Volatile Halogenated Hydrocarbons

Sample ID

	Concentration (ug/L)					
<u>Parameter</u>	<u>MW504</u>	MW502	MW600	MW601		
Dichlorodifluoromethane	ND	ND	ND	ND		
Chloromethane	ND	ND	ND	ND		
Vinyl Chloride	ND	ND	ND	ND		
Bromomethane	ND	ND	ND	ND		
Chloroethane	ND	ND	ND	ND		
Trichlorofluoromethane	ND	ND	ND	ND		
1,1-Dichloroethylene	ND	ND	ND	ND		
Methylene Chloride	ND	1.1	ND	ND		
t-1,2-Dichloroethylene	0.78	ND	ND	ND		
1,1-Dichloroethane	2.7	0.89	ND	1.7		
c-1,2-Dichloroethylene	14	6.9	2.1	4.3		
Chloroform	ND	ND	ND	ND		
1,1,1-Trichloroethane	ND	ND	ND	ND		
Carbon Tetrachloride	ND	ND	ND	ND		
1,2-Dichloroethane	13	6.1	2.9	2.7		
Trichloroethylene	ND	ND	ND	ND		
1,2-Dichloropropane	ND	ND	ND	0.89		
Bromodichloromethane	ND	ND	ND	ND		
c-1,3-Dichloropropylene	ND	ND	ND	ND		
t-1,3-Dichloropropylene	ND	ND	ND	ND		
1,1,2-Trichloroethane	ND	ND	ND	ND		
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND		
Dibromochloromethane	ND	ND	ND	ND		
Chlorobenzene	ND	ND	ND	ND		
Tetrachloroethylene	ND	ND	ND	ND		
Bromoform	ND	ND	ND	ND		
1,3-Dichlorobenzene	ND	ND	ND	ND		
1,4-Dichlorobenzene	ND	ND	ND	ND		
1,2-Dichlorobenzene	ND	ND	ND	ND		
Reporting Limits:	0.5	2.0	5.0	0.5		
Surrogate Recovery % #1	106	112	99	67		
Surrogate Recovery % #2	81	31*	16*	8.9*		
Surrogate Recovery % #3		8*	4.5*	. *		
ND = Not Detected	* Matrix problems due to hi	igh hydrocarbons in	sample			

TESTING LABORATORIES

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client: Client Address: Powerine Oil Company 12354 Lakeland Road

Report Date: JEL Ref. No.:

12/15/16 A-2438

Santa Fe Springs, CA 90670

Client Ref. No.:

63-01

Attn:

Matt Winefield

Date Sampled: Date Received: 12/12/95 12/14/95

Project:

Powerine Oil Co.

Date Analyzed:

12/14/95

Project Address:

Santa Fe Springs, CA

Physical State:

Water

EPA 8010 - Volatile Halogenated Hydrocarbons

Sample ID Concentration (ug/L)

Parameter	TB	TB #2
A MIMILIANT.		
Dichlorodifluoromethane	ND	ND
Chloromethane	ND	ND
Vinyl Chloride	ND	ND
Bromomethane	ND	ND
Chloroethane	ND	ND
Trichlorofluoromethane	ND	ND
1,1-Dichloroethylene	ND	ND
Methylene Chloride	ND	ND
t-1,2-Dichloroethylene	ND	ND
1,1-Dichloroethane	ND	ND
c-1,2-Dichloroethylene	ND	ND
Chloroform	ND	ND
1,1,1-Trichloroethane	ND	ND
Carbon Tetrachloride	ND	ND
1,2-Dichloroethane	ND	ND
Trichloroethylene	ND	ND
1,2-Dichloropropane	ND	ND
Bromodichloromethane	ND	ND
c-1,3-Dichloropropylene	ND	ND
t-1,3-Dichloropropylene	ND	ND
1,1,2-Trichloroethane	ND	ND
1,1,2,2-Tetrachloroethane	ND	ND
Dibromochloromethane	ND	ND
Chlorobenzene	ND	ND
Tetrachloroethylene	ND	ND
Bromoform	ND	ND
1,3-Dichlorobenzene	ND	ND
1,4-Dichlorobenzene	ND	ND
1,2-Dichlorobenzene	ND	ND
Reporting Limits:	0.5	0.5
Surrogate Recovery % #1	102	102
Surrogate Recovery % #2	114	104
Surrogate Recovery % #3 ND = Not Detected	119	97

TESTING LABORATORIES

JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client: Client Address: Powerine Oil Company 12354 Lakeland Road Santa Fe Springs, CA 90670 Report Date: JEL Ref. No.: Client Ref. No.:

12/15/16 A-2438 63-01

Attn:

Matt Winefield

Date Sampled: Date Received: 12/12/95 12/14/95

Project:

Powerine Oil Co.

Date Analyzed:

12/14/95

Project Address:

Santa Fe Springs, CA

Physical State:

Water

EPA 8010 - Volatile Halogenated Hydrocarbons

Sample Spiked: EQUIP BLK

Parameter	MS <u>Recovery</u>	MSD <u>Recovery</u>	RPD	Acceptability Range (%)
1,1-DCE	127%	126%	1.6%	65 - 140
TCE	121%	120%	1.7%	65 - 140
CLBZ	108%	106%	1.9%	65 - 140

Sample Spiked: TB #2

Parameter	MS <u>Recovery</u>	MSD Recovery	RPD	Acceptability Range (%)
1,1-DCE	89%	91%	2.2%	65 - 140
TCE	98%	101%	2.6%	65 - 140
CLBZ	108%	115%	6.5%	65 - 140

Method Blank = Not Detected

MS = Matrix Spike

= Matrix Spike Duplicate MSD = Relative Percent Difference RPD

TESTING LABORATORIES JONES ENVIRONMENTAL

LABORATORY RESULTS

Client: Client Address: Powerine Oil Company 12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date: JEL Ref. No.:

12/15/16 A-2438

Client Ref. No.:

63-01

Attn:

Matt Winefield

Date Sampled: Date Received: 12/12/95

Project:

Powerine Oil Co.

Date Analyzed:

12/14/95

Project Address:

Santa Fe Springs, CA

Physical State:

12/14/95 Water

Modified EPA 8015 - Volatile Hydrocarbons (Gasoline)

Sample ID	Concentration (mg/L)	Surrogate Recovery %	Reporting Limits (mg/L)
MW 104	ND	99	0.5
MW 205	2.1	123	0.5
MW 203	0.64	112	0.5
MW 101	2.4	116	1.0
MW 202	6.5		1.0
MW 503	8.2		1.0
MW 201	9.0		1.0
MW 103	4.1	99	2.0
MW 501	69		5.0
MW 206	12	107	1.0
MW 204	12000		100
EQUIP BLK	ND	97	0.5
MW 504	99		10
MW 502	220	**	10
MW 600	3500		100
MW 601	3500		100
TB	ND	91	0.5

ND = Not Detected

TESTING LABORATORIES JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client:

Powerine Oil Company

Report Date: JEL Ref. No.: 12/15/16

Client Address:

12354 Lakeland Road

A-2438

Santa Fe Springs, CA 90670

Client Ref. No.:

63-01

Attn:

Matt Winefield

Date Sampled:

12/12/95

Project:

Powerine Oil Co.

Date Received: Date Analyzed: 12/14/95 12/14/95

Project Address:

Santa Fe Springs, CA

Water

Physical State:

Modified EPA 8015 - Volatile Hydrocarbons (Gasoline)

Sample Spiked: MW 104

MS MSD Acceptability **Parameter** Recovery (%) Recovery (%) RPD Range (%) 65 - 125 Gasoline 127% 111% 14.1%

Method Blank = Not Detected

MS

= Matrix Spike

MSD RPD

= Matrix Spike Duplicate = Relative Percent Difference

TESTING LABORATORIES JONES ENVIRONMENTAL

LABORATORY RESULTS

Client: Client Address: Powerine Oil Company

12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date:

JEL Ref. No.: Client Ref. No.:

12/15/16

A-2438 63-01

Attn:

Matt Winefield

Date Sampled:

12/12/95

Project: Project Address: Powerine Oil Co.

Santa Fe Springs, CA

Date Received: Date Analyzed: 12/14/95 12/14/95

Water

Physical State:

Simulated Distillation (Carbon Chain ID)

Sample ID Concentration (mg/L)

Carbon Chain Range	MW 205	MW 203	MW 101	MW 202	MW 503	MW 201
C8-C9	ND	ND	ND	ND	ND	ND
C10-C11	ND	ND	ND	ND	ND	ND
C12-C13	ND	ND	ND	ND	ND	ND
C14-C15	ND	ND	ND	ND	ND	ND
C16-C17	ND	ND	ND	ND	ND	ND
C18-C19	ND	ND	ND	ND	ND	ND
C20-C23	ND	ND	ND	ND	ND	ND
C24-C27	ND	ND	ND	ND	ND	ND
C28-C31	ND	ND	ND	ND	ND	ND
C32-C35	ND	ND	ND	ND	ND	ND
C36-C39	ND	ND	ND	ND	ND	ND
C40-C43	ND	ND	ND	ND	ND	ND
C44+	ND	ND	ND	ND	ND	ND
Total	ND	ND	ND	ND	ND	ND
Reporting Limits	5.0	5.0	5.0	5.0	5.0	5.0
Surrogate Recovery %	107	101	103	105	93	108

ND = Not Detected

TESTING LABORATORIES JONES ENVIRONMENTAL

LABORATORY RESULTS

Client: Client Address:

Powerine Oil Company 12354 Lakeland Road Santa Fe Springs, CA 90670 Report Date: JEL Ref. No.: Client Ref. No.: 12/15/16 A-2438 63-01

Attn:

Matt Winefield

Date Sampled: Date Received:

12/12/95 12/14/95

Project:
Project Address:

Powerine Oil Co. Santa Fe Springs, CA Date Analyzed: Physical State:

12/14/95 Water

Simulated Distillation (Carbon Chain ID)

Sample ID Concentration (mg/L)

Carbon Chain Range	MW 103	MW 501	MW.206	MW 204	MW504
C6-C7	NĎ	0.7	ND	ND	0.4
C8-C9	ND	9.5	ND	ND	12
C10-C11	ND	9.7	ND	ND	15
C12-C13	ND	ND	ND	ND	9.5
C14-C15	ND	ND	ND	ND	ND
C16-C17	ND	ND	ND	ND	ND
C18-C19	ND	ND	ND	ND	ND
C20-C23	ND	ND	ND	ND	ND
C24-C27	ND	ND	ND	ND	ND
C28-C31	ND	ND	ND	ND	ND
C32-C35	ND	ND	ND	ND	ND
C36-C39	ND	ND	ND	ND	ND
C40-C43	ND	ND	ND	ND	ND
C44+	ND	ND	ND	ND	ND
Total	ND	20	ND	ND	37
Reporting Limits	5.0	5.0	5.0	5.0	5.0
Surrogate Recovery %	99	108	99	98	105

ND = Not Detected

TESTING LABORATORIES JONES ENVIRONMENTAL

LABORATORY RESULTS

Client:

Client Address:

Powerine Oil Company

12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date:

JEL Ref. No.:

Client Ref. No.:

12/15/16

A-2438 63-01

Attn:

Project:

Matt Winefield

Date Sampled:

12/12/95

Powerine Oil Co.

Date Received: Date Analyzed: 12/14/95

12/14/95

Project Address:

Santa Fe Springs, CA

Physical State:

Water

Simulated Distillation (Carbon Chain ID)

Sample ID Concentration (mg/L)

Carbon Chain Range	MW 502	MW 600	MW 601
C6-C7	4.0	85	140
C8-C9	24	280	680
C10-C11	5.8	47	200
C12-C13	ND	ND	22
C14-C15	ND	ND	31
C16-C17	7.3	ND	27
C18-C19	ND	ND	10.
C20-C23	ND	ND	ND
C24-C27	ND	ND	ND
C28-C31	ND	ND	ND
C32-C35	ND	ND	ND
C36-C39	ND	ND	ND
C40-C43	ND	ND	ND
C44+	ND	ND	ND
Total	41	410	1100
Reporting Limits	5.0	20	10
Surrogate Recovery %	110	102	85

ND = Not Detected

TESTING LABORATORIES JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client:
Client Address:

Powerine Oil Company

12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date:

JEL Ref. No.: Client Ref. No.: 12/15/16 A-2438

63-01

Attn:

Matt Winefield

Date Sampled:

12/12/95

Project:

Powerine Oil Co.

Date Received: Date Analyzed:

12/14/95 12/14/95

Project Address:

Santa Fe Springs, CA

Physical State:

Water

Simulated Distillation (Carbon Chain ID)

Sample Spiked: MW 206

Parameter	MS <u>Recovery (%)</u>	MSD Recovery (%)	RPD	Acceptability Range (%)
Diesel	101%	97%	4.1%	65 - 125

Method Blank = Not Detected

MS = Matrix Spike

MSD = Matrix Spike Duplicate RPD = Relative Percent Difference

TESTING LABORATORIES

JONES ENVIRONMENTAL

LABORATORY REPORT

Client: Client Address: Powerine Oil Company 12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date: JEL Ref. No.: 12/26/95 A-2452 63-01

Client Ref. No.:

Attn:

Matt Winefield

Date Sampled: Date Received: 12/20/95 12/20/95 12/20-27/95

Project: Project Address: Powerine

Santa Fe Springs, CA

Date Analyzed: Physical State:

Water

ANALYSES REQUESTED

- 1. EPA 8020 - Volatile Aromatic Hydrocarbons
- 2. EPA 8010 - Volatile Halogenated Hydrocarbons
- Mod 8015 Gasoline Volatile Hydrocarbons 3.
- 4. **ASTM 2887** - Simulated Distillation

Approval:

Steve Jones, Ph.D. Laboratory Manager

TESTING LABORATORIES

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client: Client Address:

Project Address:

Powerine Oil Company 12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date: JEL Ref. No.: Client Ref. No.: 12/26/95 A-2452 63-01

Attn:

Matt Winefield

Date Sampled: Date Received:

12/20/95 12/20/95

Project:

Powerine

Santa Fe Springs, CA

Date Analyzed: Physical State:

12/20/95 Water

EPA 8020 - Volatile Aromatic Hydrocarbons

		Concentration	(ug/L)		Reporting	
Sample ID	Benzene	Toluene	Ethylbenzene	Xylenes	Limits (ug/L)	Surrogate Recovery %
MW-603	0.98	1.4	0.62	3.3	0.5	94
MW-107	16	0.99	0.77	2.9	0.5	121
MW-105	1.1	1.7	0.81	3.7	0.5	96

ND = Not Detected

TESTING LABORATORIES JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client: Client Address: Powerine Oil Company 12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date: JEL Ref. No.: 12/26/95 A-2452

Client Ref. No.:

63-01

Attn:

Matt Winefield

Date Sampled: Date Received: 12/20/95

Project:

Powerine

Date Analyzed:

12/20/95 12/20/95

Project Address:

Santa Fe Springs, CA

Physical State:

Water

EPA 8020 - Volatile Aromatic Hydrocarbons

Sample Spiked: PIPP 02 (A-2449)

<u>Parameter</u>	MS <u>Recovery (%)</u>	MSD Recovery (%)	RPD	Acceptability Range (%)
Toluene	108%	110%	1.3%	65 - 125
o-Xylene	106%	111%	4.4%	65 - 125

Method Blank = Not Detected

MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

TESTING LABORATORIES

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client: Client Address: Powerine Oil Company 12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date: JEL Ref. No.: Client Ref. No.: 12/26/95 A-2452 63-01

Attn:

Matt Winefield

Date Sampled: Date Received: 12/20/95 12/20/95

Project:
Project Address:

Powerine

Santa Fe Springs, CA

Date Analyzed: Physical State:

12/27/95 Water

EPA 8010 - Volatile Halogenated Hydrocarbons

Sample ID

	Concentration (ug/L)			
<u>Parameter</u>	MW-603	MW-107	MW-105	
Dichlorodifluoromethane	ND	ND	ND	
Chloromethane	ND	ND	ND	
Vinyl Chloride	ND	ND	ND	
Bromomethane	ND	ND	ND	
Chloroethane	ND	ND	ND	
Trichlorofluoromethane	ND	ND	ND	
1,1-Dichloroethylene	42	ND	13	
Methylene Chloride	ND	ND	ND	
t-1,2-Dichloroethylene	ND	6.5	ND	
1,1-Dichloroethane	4.8	ND	4.5	
c-1,2-Dichloroethylene	6.7	28	9.4	
Chloroform	ND	ND	ND	
1,1,1-Trichloroethane	ND	ND	ND	
Carbon Tetrachloride	ND	ND	ND	
1,2-Dichloroethane	5.7	ND	3.3	
Trichloroethylene	46	ND	46	
1,2-Dichloropropane	ND	ND	ND	
Bromodichloromethane	ND	ND	ND	
c-1,3-Dichloropropylene	ND	ND	ND	
t-1,3-Dichloropropylene	ND	ND	ND	
1,1,2-Trichloroethane	ND	ND	ND	
1,1,2,2-Tetrachloroethane	ND	ND	ND	
Dibromochloromethane	ND	ND	ND	
Chlorobenzene	ND	ND	ND	
Tetrachloroethylene	40	ND	16	
Bromoform	ND	ND	ND	
1,3-Dichlorobenzene	ND	ND	ND	
1,4-Dichlorobenzene	ND	ND	ND	
1,2-Dichlorobenzene	ND	ND	ND	
Reporting Limits:	0.5	0.5	0.5	
Surrogate Recovery %#1	93	95	95	
Surrogate Recovery %#2	99	88	89	
Surrogate Recovery %#3	91	91	92	
ND = Not Detected				

TESTING LABORATORIES

JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client: Client Address: Powerine Oil Company 12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date: JEL Ref. No.: Client Ref. No.: 12/26/95 A-2452 63-01

Attn:

Matt Winefield

Date Sampled:

12/20/95

Project:

Powerine

Date Received: Date Analyzed:

12/20/95 12/27/95

Project Address:

Santa Fe Springs, CA

Physical State:

Water

EPA 8010 - Volatile Halogenated Hydrocarbons

Sample Spiked: Clean Water

Parameter	MS Recovery	MSD <u>Recovery</u>	RPD	Acceptability Range (%)
1,1-DCE	80%	82%	2.0%	65 - 140
TCE	86%	73%	16%	65 - 140
CLBZ	82%	70%	15%	65 - 140

Method Blank = Not Detected

MS = Matrix Spike

MSD = Matrix Spike Duplicate RPD = Relative Percent Difference

TESTING LABORATORIES

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client: Client Address: Powerine Oil Company 12354 Lakeland Road Santa Fe Springs, CA 90670

Report Date: JEL Ref. No.: Client Ref. No.: 12/26/95 A-2452 63-01

Attn:

Matt Winefield

Date Sampled:

12/20/95

Project:

Powerine

Date Received: Date Analyzed: 12/20/95 12/20/95

Project Address:

Santa Fe Springs, CA

Physical State:

Water

Modified EPA 8015 - Volatile Hydrocarbons (Gasoline)

Sample ID	Concentration (mg/L)	Surrogate Recovery %	Reporting Limits (mg/L)
MW 107	ND	121	0.5
MW 105	ND	96	0.5
MW 603	ND	94	0.5

ND = Not Detected

TESTING LABORATORIES JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client:

Powerine Oil Company

Report Date: JEL Ref. No.: 12/26/95

Client Address:

12354 Lakeland Road

A-2452

Santa Fe Springs, CA 90670

Client Ref. No.:

63-01

Attn:

Matt Winefield

Date Sampled:

12/20/95

Project:

Powerine

Date Received: Date Analyzed: 12/20/95

Project Address:

Santa Fe Springs, CA

Physical State:

12/2095 Water

Modified EPA 8015 - Volatile Hydrocarbons (Gasoline)

Sample Spiked: Pipp 02 (A-2449)

<u>Parameter</u>	MS <u>Recovery (%)</u>	MSD Recovery (%)	<u>RPD</u>	Acceptability Range (%)
Gasoline	94%	95%	0.8%	65 - 125

Method Blank = Not Detected

MS

= Matrix Spike

MSD

= Matrix Spike Duplicate

RPD

= Relative Percent Difference

TESTING LABORATORIES JONES ENVIRONMENTAL

LABORATORY RESULTS

Client: Client Address: Powerine Oil Company 12354 Lakeland Road Santa Fe Springs, CA 90670 Report Date: JEL Ref. No.: Client Ref. No.: 12/26/95 A-2452 63-01

Attn:

Matt Winefield

Date Sampled:

12/20/95

Project:

Powerine

Date Received: Date Analyzed: 12/20/95

Santa Fe Springs, CA

Physical State:

12/27/95 Water

Project Address:

Simulated Distillation (Carbon Chain ID)

Sample ID Concentration (mg/L)

Carbon Chain Range	MW 603	MW 105	MW 107
C8-C9	ND	ND	ND
C10-C11	ND	ND	ND
C12-C13	ND ·	ND	ND
C14-C15	ND	ND	ND
C16-C17	ND	ND	ND
C18-C19	ND	ND	ND
C20-C23	ND	ND	ND
C24-C27	ND	ND	ND
C28-C31	ND	ND	ND
C32-C35	ND	ND	ND
C36-C39	ND	ND	ND
C40-C43	ND	ND	ND
C44+	ND	ND	ND
Total	ND	ND	ND
Reporting Limits	10	10	10
Surrogate Recovery %	106	111	109

ND = Not Detected

TESTING LABORATORIES JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client: Client Address: Powerine Oil Company

12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date: JEL Ref. No.: 12/26/95

Client Ref. No.:

A-2452 63-01

Attn:

Matt Winefield

Date Sampled:

12/20/95

Project:

Powerine

Date Received: Date Analyzed: 12/20/95

Project Address:

Santa Fe Springs, CA

Physical State:

12/27/95

Water

Simulated Distillation (Carbon Chain ID)

Sample Spiked: MW 206 (A-2438)

Parameter	MS Recovery (%)	MSD Recovery (%)	RPD	Acceptability Range (%)
Diesel	101%	97%	4.1%	65 - 125

Method Blank = Not Detected

MS

= Matrix Spike

MSD

= Matrix Spike Duplicate

RPD

= Relative Percent Difference

TESTING LABORATORIES

JONES ENVIRONMENTAL

LABORATORY REPORT

Client: Client Address: Powerine Oil Company 12354 Lakeland Rd.

Sante Fe Springs, CA 90670

Report Date:

12/20/95 A-2446

JEL Ref. No.: Client Ref. No.:

63-01

Attn:

Matt Winefield/Nora Hill

Date Sampled:

12/18/95

Project:

Powerine Oil Co.

Date Received: Date Analyzed: 12/18/95 12/18/95

Project Address:

Santa Fe Springs, CA

Physical State:

Soil/Water

ANALYSES REQUESTED

- 1. EPA 8020 - Volatile Aromatic Hydrocarbons
- 2. EPA 8010 - Volatile Halogenated Hydrocarbons
- 3. ATSM 2887
- Simulated Distillation

Mod 8015 Gasoline - Volatile Hydrocarbons 4.

Approval:

Steve Jones, Ph.D. Laboratory Manager

TESTING LABORATORIES

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client: Client Address: Powerine Oil Company 12354 Lakeland Rd.

Sante Fe Springs, CA 90670

Report Date: JEL Ref. No.: Client Ref. No.:

12/20/95 A-2446 63-01

Attn:

Matt Winefield/Nora Hill

Date Sampled: Date Received: 12/18/95 12/18/95

Project:

Powerine Oil Co.

Date Analyzed:

12/18/95 Water

Project Address:

Santa Fe Springs, CA

Physical State:

EPA 8020 - Volatile Aromatic Hydrocarbons

		Concentration	(ug/L)		Reporting	
Sample ID	Benzene	Toluene	Ethylbenzene	Xylenes	Limits (ug/L)	Surrogate Recovery %
MW606	ND	ND	ND	ND	0.5	90
MW607	33	3.5	1.7	9.4	0.5	***

ND = Not Detected

TESTING LABORATORIES JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client: Client Address: Powerine Oil Company 12354 Lakeland Rd.

Sante Fe Springs, CA 90670

Report Date: JEL Ref. No.:

12/20/95 A-2446

Client Ref. No.:

63-01

Attn:

Matt Winefield/Nora Hill

Date Sampled: Date Received: 12/18/95 12/18/95

Project:

Powerine Oil Co.

Date Analyzed:

12/18/95

Project Address:

Santa Fe Springs, CA

Physical State:

Soil/Water

EPA 8020 - Volatile Aromatic Hydrocarbons

Sample Spiked: TB (A-2445) WATER

Parameter	MS Recovery (%)	MSD Recovery (%)	RPD	Acceptability Range (%)
Toluenė	99%	96%	2.7%	65 - 125
o-Xylene	101%	100%	1.7%	65 - 125

Sample Spiked: MW107-70 (A-2445) SOIL

Parameter	MS Recovery (%)	MSD Recovery (%)	RPD	Acceptability Range (%)
Toluene	95%	96%	1.3%	65 - 125
o-Xylene	99%	102%	3.0%	65 - 125

Method Blank = Not Detected

MS = Matrix Spike

= Matrix Spike Duplicate **MSD** = Relative Percent Difference RPD

TESTING LABORATORIES JONES ENVIRONMENTAL

LABORATORY RESULTS

Client: Client Address: Powerine Oil Company 12354 Lakeland Rd.

Sante Fe Springs, CA 90670

Report Date: JEL Ref. No.:

12/20/95 A-2446

Client Ref. No.:

63-01

Attn:

Matt Winefield/Nora Hill

Date Sampled:

12/18/95

Project:

Powerine Oil Co.

Date Received: Date Analyzed: 12/18/95 12/18/95

Project Address:

Santa Fe Springs, CA

Physical State:

Water

Simulated Distillation (Carbon Chain ID)

Sample ID Concentration (mg/L)

Carbon Chain Range	<u>MW607</u>
C8-C9	ND
C10-C11	ND
C12-C13	ND
C14-C15	ND
C16-C17	ND
C18-C19	ND
C20-C23	1.1
C24-C27	26
C28-C31	2.6
C32-C35	1.3
C36-C39	ND
C40-C43	ND
C44+	ND
Total	30
Reporting Limits	10
Surrogate Recovery %	

ND = Not Detected

TESTING LABORATORIES JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client: Client Address: Powerine Oil Company 12354 Lakeland Rd.

Sante Fe Springs, CA 90670

Report Date: JEL Ref. No.: Client Ref. No.: 12/20/95 A-2446 63-01

Attn:

Matt Winefield/Nora Hill

Date Sampled: Date Received: 12/18/95 12/18/95

Project:

Powerine Oil Co.

Date Analyzed:

12/18/95

Project Address:

Santa Fe Springs, CA

Physical State:

Soil/Water

Simulated Distillation (Carbon Chain ID)

Sample Spiked: TB (A-2445) WATER

Parameter	MS Recovery (%)	MSD Recovery (%)	RPD	Acceptability Range (%)
Diesel	83%	104%	18.4%	65 - 125

Sample Spiked: MW605-60 SOIL

Parameter	MS Recovery (%)	MSD Recovery (%)	RPD	Acceptability Range (%)
Diesel	94%	91%	3.6%	65 - 125

Method Blank = Not Detected

MS = Matrix Spike

= Matrix Spike Duplicate MSD RPD = Relative Percent Difference

TESTING LABORATORIES

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client: Client Address: Powerine Oil Company 12354 Lakeland Rd.

Sante Fe Springs, CA 90670

Report Date: JEL Ref. No.: Client Ref. No.: 12/20/95 A-2446 63-01

Attn:

ND

= Not Detected

Matt Winefield/Nora Hill

Date Sampled: Date Received: 12/18/95 12/18/95

Project:
Project Address:

Powerine Oil Co. Santa Fe Springs, CA Date Analyzed: Physical State:

12/18/95 Water

EPA 8010 - Volatile Halogenated Hydrocarbons

Sample ID

		Concentration (ug/L)
Parameter	MW606	MW607
Dichlorodifluoromethane	ND	ND
Chloromethane	ND	ND ND
Vinyl Chloride	ND	ND ND
Bromomethane	ND ND	ND ND
Chloroethane	ND	ND ND
Trichlorofluoromethane	ND	ND ND
	ND	1.1
1,1-Dichloroethylene	ND ND	ND
Methylene Chloride	ND ND	ND ND
t-1,2-Dichloroethylene	ND ND	ND ND
1,1-Dichloroethane		
c-1,2-Dichloroethylene Chloroform	ND ND	ND ND
	ND	ND ND
1,1,1-Trichloroethane Carbon Tetrachloride	ND ND	ND ND
	7.4	ND ND
1,2-Dichloroethane	ND	ND ND
Trichloroethylene 1,2-Dichloropropane	ND ND	ND ND
Bromodichloromethane	ND	ND ND
	ND ND	ND ND
c-1,3-Dichloropropylene t-1,3-Dichloropropylene	ND	ND ND
1,1,2-Trichloroethane	ND	ND ND
1,1,2,2-Tetrachloroethane	ND	ND ND
Dibromochloromethane	ND	ND
Chlorobenzene	ND	ND
Tetrachloroethylene	ND	ND
Bromoform	ND	ND
1,3-Dichlorobenzene	ND	ND
1,4-Dichlorobenzene	ND	ND
1,2-Dichlorobenzene	ND	ND
1,2 Didition of the little in	ND	ND
Reporting Limits:	0.5	0.5
Surrogate Recovery % #1	111	109
Surrogate Recovery % #2	99	122
Surrogate Recovery % #3	96	125
1/D 1/ D 1		

TESTING LABORATORIES JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client:

Powerine Oil Company 12354 Lakeland Rd.

Report Date: JEL Ref. No.:

12/20/95 A-2446

Client Address:

Sante Fe Springs, CA 90670

Client Ref. No.:

63-01

Attn:

Matt Winefield/Nora Hill

Date Sampled:

12/18/95

Project:

Powerine Oil Co.

Date Received: Date Analyzed: 12/18/95 12/18/95

Project Address:

Santa Fe Springs, CA

Physical State:

Soil/ Water

EPA 8010 - Volatile Halogenated Hydrocarbons

Sample Spiked: TB (A-2445) WATER

	MS	MSD		Acceptability
Parameter	Recovery	Recovery	RPD	Range (%)
I,1-DCE	89%	91%	2.2%	65 - 140
TCE	98%	101%	2.6%	65 - 140
CLBZ	108%	115%	6.5%	65 - 140

Sample Spiked: MW-605-10 (A-2445) SOIL

Parameter	MS <u>Recovery</u>	MSD <u>Recovery</u>	RPD	Acceptability Range (%)
1,1-DCE	91%	89%	2.0%	65 - 140
TCE	100%	98%	2.6%	65 - 140
CLBZ	112%	110%	1.4%	65 - 140

Method Blank = Not Detected

MS = Matrix Spike

= Matrix Spike Duplicate MSD **RPD** = Relative Percent Difference

TESTING LABORATORIES JONES ENVIRONMENTAL

LABORATORY RESULTS

Client: Client Address: Powerine Oil Company 12354 Lakeland Rd.

Sante Fe Springs, CA 90670

Report Date: JEL Ref. No.: Client Ref. No.:

12/20/95 A-2446 63-01

Attn:

Matt Winefield/Nora Hill

Date Sampled: Date Received: 12/18/95 12/18/95

Project:

Powerine Oil Co.

Date Analyzed: Physical State:

12/18/95 Water

Project Address:

Santa Fe Springs, CA

Modified EPA 8015 - Volatile Hydrocarbons (Gasoline)

Sample ID	Concentration (mg/L)	Surrogate Recovery %	Reporting Limits (mg/L)
MW 606	ND	90	0.5
MW 607	1.2		0.5

ND = Not Detected

TESTING LABORATORIES JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client:

Client Address:

Powerine Oil Company

12354 Lakeland Rd.

Sante Fe Springs, CA 90670

Report Date:

JEL Ref. No.:

A-2446

Client Ref. No.:

63-01

12/20/95

Attn:

Matt Winefield/Nora Hill

Date Sampled: Date Received: 12/18/95

Project:

Powerine Oil Co.

Date Analyzed:

12/18/95 12/18/95

Project Address:

Santa Fe Springs, CA

Soil/ Water

Physical State:

Modified EPA 8015 - Volatile Hydrocarbons (Gasoline)

WATER

Sample Spiked: TB

Parameter

MS Recovery (%)

MSD Recovery (%)

RPD

Acceptability

Range (%)

Gasoline

107%

106%

0.8%

65 - 125

SOIL

Sample Spiked: MW 107-70 (A-2445)

Parameter

MS Recovery (%) MSD

Recovery (%)

RPD

Acceptability Range (%)

Gasoline

103%

106%

2.5%

65 - 125

Method Blank = Not Detected

MS

= Matrix Spike

MSD RPD

= Matrix Spike Duplicate = Relative Percent Difference

TESTING LABORATORIES

JONES ENVIRONMENTAL

LABORATORY REPORT

Client: Client Address: Powerine Oil Company 12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date: JEL Ref. No.:

12/21/95 A-2450

Client Ref. No.:

A-2450 63-01

Attn:

Matt Winefield

Date Sampled:

12/19/95

Project:

Powerine

Date Received: Date Analyzed: 12/19/95 12/19/95

Project Address:

Santa Fe Springs, CA

Physical State:

Soil/Water

ANALYSES REQUESTED

- 1. EPA 8020 Volatile Aromatic Hydrocarbons
- 2. EPA 8010 Volatile Halogenated Hydrocarbons
- 3. ATSM 2887
- Simulated Distillation
- 4. Mod 8015 Gasoline Volatile Hydrocarbons

Approval:

Steve Jones, Ph.D. Laboratory Manager

TESTING LABORATORIES

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client: Client Address: Powerine Oil Company 12354 Lakeland Road Santa Fe Springs, CA 90670

Report Date: JEL Ref. No.: Client Ref. No.: 12/21/95 A-2450 63-01

Matt Winefield

Date Sampled:

12/19/95

Project:

Attn:

Powerine

Date Received: Date Analyzed:

12/19/95 12/19/95

Project Address:

Santa Fe Springs, CA

Physical State:

Water

EPA 8020 - Volatile Aromatic Hydrocarbons

		Concentration	(ug/L)		Reporting	
Sample ID	Benzene	Toluene	Ethylbenzene	Xylenes	Limits (ug/L)	Surrogate Recovery %
MW605	10	ND	ND	4.9	0.5	87
MW604	160	3.3	7.8	21	0.5	•
MW106	12	3.5	10	10	0.5	

ND = Not Detected

TESTING LABORATORIES JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client:

Powerine Oil Company

Report Date: JEL Ref. No.: 12/21/95

Client Address:

12354 Lakeland Road

A-2450

Santa Fe Springs, CA 90670

Client Ref. No.:

63-01

Attn:

Matt Winefield

Date Sampled:

12/19/95

Project:

Date Received:

12/19/95

Powerine

Date Analyzed:

12/19/95

Project Address:

Santa Fe Springs, CA

Physical State:

Soil/Water

EPA 8020 - Volatile Aromatic Hydrocarbons

Sample Spiked: UST-2A (A2452)

Parameter _	MS Recovery (%)	MSD Recovery (%)	RPD	Acceptability Range (%)
Toluene	115%	115%	0.0%	65 - 125
o-Xylene	110%	111%	0.2%	65 - 125

Sample Spiked: CLEAN WATER

Parameter	MS Recovery (%)	MSD Recovery (%)	RPD	Acceptability Range (%)
Toluene	96%	96%	0.2%	65 - 125
o-Xylene	96%	102%	6.6%	65 - 125

Method Blank = Not Detected

MS = Matrix Spike

MSD = Matrix Spike Duplicate = Relative Percent Difference RPD

TESTING LABORATORIES

JONES ENVIRONMENTAL

LABORATORY RESULTS

Client: Client Address: Powerine Oil Company 12354 Lakeland Road Santa Fe Springs, CA 90670 Report Date: JEL Ref. No.: Client Ref. No.: 12/21/95 A-2450 63-01

Attn:

Matt Winefield

Date Sampled: Date Received: 12/19/95 12/19/95

Project:

Powerine

Date Analyzed:

12/19/95

Project Address:

Santa Fe Springs, CA

Physical State:

Water

EPA 8010 - Volatile Halogenated Hydrocarbons

Sample ID
Concentration (ug/L)

	C	,)	
Parameter	<u>MW605</u>	MW604	<u>MW106</u>
Dichlorodifluoromethane	ND	ND	ND
Chloromethane	ND	ND	ND
Vinyl Chloride	ND	ND	ND
Bromomethane	ND	ND	ND
Chloroethane	ND	ND	ND
Trichlorofluoromethane	ND	ND	ND
1,1-Dichloroethylene	4.5	ND	ND
Methylene Chloride	ND	ND	ND
t-1,2-Dichloroethylene	ND	ND	15
1,1-Dichloroethane	1.6	ND	ND
c-1,2-Dichloroethylene	ND	2.2	33
Chloroform	ND	ND	ND
1,1,1-Trichloroethane	ND	ND	ND
Carbon Tetrachloride	ND	ND	ND
1,2-Dichloroethane	ND	1.2	ND
Trichloroethylene	18	ND	1.5
1,2-Dichloropropane	ND	ND	ND
Bromodichloromethane	ND	ND	ND
c-1,3-Dichloropropylene	ND	ND	ND
t-1,3-Dichloropropylene	ND	ND	ND
1,1,2-Trichloroethane	ND	ND	ND
1,1,2,2-Tetrachloroethane	ND	ND	ND
Dibromochloromethane	ND	ND	ND
Chlorobenzene	ND	ND	ND
Tetrachloroethylene	14	ND	ND
Bromoform	ND	ND	ND
1,3-Dichlorobenzene	ND	ND	ND
1,4-Dichlorobenzene	ND	ND	ND
1,2-Dichlorobenzene	ND	ND	ND
Reporting Limits:	1.0	1.0	1.0
Surrogate Recovery % #1	81	119	105
Surrogate Recovery % #2	68	93	102
Surrogate Recovery % #3	72	109	109
ND = Not Detected			

TESTING LABORATORIES JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client: Client Address: Powerine Oil Company 12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date:

12/21/95 JEL Ref. No.:

Client Ref. No.:

A-2450 63-01

Attn:

Matt Winefield

Date Sampled:

12/19/95

Project:

Powerine

Date Received: Date Analyzed: 12/19/95

12/19/95

Project Address:

Santa Fe Springs, CA

Physical State:

Soil/Water

EPA 8010 - Volatile Halogenated Hydrocarbons

Sample Spiked: MW603-10 (SOIL)

Parameter	MS <u>Recovery</u>	MSD <u>Recovery</u>	RPD	Acceptability Range (%)
1,1-DCE	101%	106%	4.6%	65 - 140
TCE	98%	102%	3.3%	65 - 140
CLBZ	85%	85%	0.68%	65 - 140

Sample Spiked: MW604 (WATER)

Parameter	MS <u>Recovery</u>	MSD <u>Recovery</u>	<u>RPD</u>	Acceptability Range (%)
1,1-DCE	103%	105%	0.4%	65 - 125
TCE	104%	104%	0.36%	65 - 125
CLBZ	95%	96%	1.3%	65 - 125

Method Blank = Not Detected

MS = Matrix Spike

MSD = Matrix Spike Duplicate = Relative Percent Difference RPD

TESTING LABORATORIES JONES ENVIRONMENTAL

LABORATORY RESULTS

Client: Client Address:	Powerine Oil Company 12354 Lakeland Road Santa Fe Springs, CA 90670	Report Date: JEL Ref. No.: Client Ref. No.:	12/21/95 A-2450 63-01
Attn:	Matt Winefield	Date Sampled: Date Received:	12/19/95 12/19/95
Project: Project Address:	Powerine Santa Fe Springs, CA	Date Analyzed: Physical State:	12/19/95 12/19/95 Water

Modified EPA 8015 - Volatile Hydrocarbons (Gasoline)

Sample ID	Concentration (mg/L)	Surrogate Recovery %	Reporting Limits (mg/L)
MW 605	ND	87	1.0
MW 604	1.9*		1.0
MW 106	0.79*		1.0

^{*} Hydrocarbons in the gasoline range are not typical of gasoline.

ND = Not Detected

TESTING LABORATORIES JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client:
Client Address:

Powerine Oil Company

12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date: JEL Ref. No.:

Client Ref. No.:

12/21/95 A-2450

63-01

Attn:

Matt Winefield

Date Sampled: Date Received: 12/19/95 12/19/95

Project:

Project Address:

Powerine

Santa Fe Springs, CA

Date Analyzed:

12/19/95

Physical State:

Soil/Water

Modified EPA 8015 - Volatile Hydrocarbons (Gasoline)

SOIL

Sample Spiked: UST-2A (A-2452)

Parameter	MS <u>Recovery (%)</u>	MSD Recovery (%)	RPD	Acceptability Range (%)
Gasoline	98%	100%	1.2%	65 - 125

WATER

Sample Spiked: Clean Water

Parameter	MS <u>Recovery (%)</u>	MSD Recovery (%)	RPD	Acceptability Range (%)
Gasoline	104%	107%	3.6%	65 - 125

Method Blank = Not Detected

MS = Matrix Spike

MSD = Matrix Spike Duplicate RPD = Relative Percent Difference

TESTING LABORATORIES JONES ENVIRONMENTAL

LABORATORY RESULTS

Client: Client Address:

Project Address:

Powerine Oil Company 12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date: JEL Ref. No.: Client Ref. No.:

12/21/95 A-2450 63-01

Attn:

Matt Winefield

Date Sampled: Date Received: 12/19/95 12/19/95

Project:

Powerine

Santa Fe Springs, CA

Date Analyzed:

12/19/95

Physical State:

Water

Simulated Distillation (Carbon Chain ID)

Sample ID Concentration (mg/L)

Carbon Chain Range	MW 106	MW 604
C8-C9	NĐ .	ND
C10-C11	ND	ND
C12-C13	ND	ND
C14-C15	ND	ND
C16-C17	ND	ND
C18-C19	ND	ND
C20-C23	ND	ND
C24-C27	ND	ND
C28-C31	ND	ND
C32-C35	ND	ND
C36-C39	ND	ND
C40-C43	ND	ND
C44+	ND	ND
Total	ND	ND
Reporting Limits	10	10
Surrogate Recovery %	109	103

ND = Not Detected

TESTING LABORATORIES JONES ENVIRONMENTAL

QUALITY CONTROL INFORMATION

Client:

Client Address:

Powerine Oil Company

12354 Lakeland Road

Santa Fe Springs, CA 90670

Report Date:

JEL Ref. No.:

Client Ref. No.:

12/21/95

A-2450 63-01

Attn:

Matt Winefield

Date Sampled:

12/19/95

Date Received: Date Analyzed: 12/19/95

Project: Project Address: Powerine

Santa Fe Springs, CA

Physical State:

12/19/95 Soil/Water

Simulated Distillation (Carbon Chain ID)

WATER

Sample Spiked: MW 206 (A-2438)

Parameter

MS Recovery (%)

MSD Recovery (%)

RPD

Acceptability

Range (%)

Diesel

101%

97%

4.1%

65 - 125

SOIL

Sample Spiked: MW 605-60

Parameter

MS Recovery (%)

MSD Recovery (%)

RPD

Acceptability Range (%)

Diesel

94%

91%

3.6%

65 - 125

Method Blank = Not Detected

MS

= Matrix Spike

MSD

= Matrix Spike Duplicate

RPD

= Relative Percent Difference

CORE LABORATORIES
ANALYTICAL REPORT

Job Number: 953702 Prepared For:

Miller Brooks Env. John Tecchia 18700 Beach Blvd Ste 205 Huntington Beach, CA 92648

Date: 12/27/95

Signature

Name: Timothy A. Scott

Title: LABORATORY MANAGER

Core Laboratories 1250 Gene Autry Way Anaheim, CA 92805

C A. E. L. A. P. 1174 L A. C. S. D. 10146

LABORATORY TESTS RESULTS

12/27/95

JOB NUMBER: 953702

CUSTOMER: Miller Brooks Env.

ATTN: John Tecchia

CLIENT I.D.....: Powerine
DATE SAMPLED....: 12/13/95
TIME SAMPLED....: 09:40
WORK DESCRIPTION...: MW 101

LABORATORY I.D...: 953702-0010
DATE RECEIVED...: 12/15/95
TIME RECEIVED...: 08:09

REMARKS..... H2O PLASTIC

TEST DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	TECH
Metals Digestion-Aqueous	COMPLETED		N/A	EPA 3010A	12/22/95	S A
Metals		*10		EPA 6020	12/22/95	EAW
Lead (Pb)	ND	0.050	mg/L	EPA 6020		
	ļ					
	**					

1250 Gene Autry Way Anaheim, CA 92805 (714) 937-1094

PAGE:10

LABORATORY TESTS RESULTS

12/27/95

JOB NUMBER: 953702 CUSTOMER: Miller Brooks Env. ATTN: John Tecchia

CLIENT I.D.....: Powerine
DATE SAMPLED....: 12/13/95
TIME SAMPLED....: 12:07
WORK DESCRIPTION...: MW 103

LABORATORY I.D..: 953702-0014
DATE RECEIVED...: 12/15/95
TIME RECEIVED...: 08:09
REMARKS...... H20 PLASTIC

TEST DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	TECHI
Metals Digestion-Aqueous	COMPLETED		N/A	EPA 3010A	12/22/95	S A
Metals		*10		EPA 6020	12/22/95	EAW
Lead (Pb)	ND	0.050	mg/L	EPA 6020		
	**					
! 						

LABORATORY TESTS RESULTS

12/27/95

JOB NUMBER: 953702 CUSTOMER: Miller Brooks Env.

ATTN: John Tecchia

CLIENT I.D.....: Powerine
DATE SAMPLED....: 12/13/95
TIME SAMPLED....: 07:40
WORK DESCRIPTION...: MW 104

LABORATORY I.D...: 953702-0007 DATE RECEIVED....: 12/15/95 TIME RECEIVED....: 08:09

REMARKS..... H2O PLASTIC

TEST DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	TECHN
Metals Digestion-Aqueous	COMPLETED		N/A	EPA 3010A	12/22/95	S A
Metals		*10		EPA 6020	12/22/95	EAW
Lead (Pb)	ND	0.050	mg/L	EPA 6020		
	v.					

LABORATORY TESTS RESULTS

12/27/95

JOB NUMBER: 953702 CUSTOMER: Miller Brooks Env. ATTN: John Tecchia

CLIENT I.D..... POWERINE
DATE SAMPLED..... 12/13/95
TIME SAMPLED..... 11:25
FORK DESCRIPTION... MW 201

TEST DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	TECHN
Hetals Digestion-Aqueous	COMPLETED		N/A	EPA 3010A	12/22/95	SA
Metals		*10		EPA 6020	12/22/95	EAW
Lead (Pb)	ND	0.050	mg/L	EPA 6020		
ļ						
i						
l						
er.						
_		:				
•						
•						

LABORATORY TESTS RESULTS

12/27/95

JOB NUMBER: 953702

CUSTOMER: Miller Brooks Env.

ATTN: John Tecchia

CLIENT I.D.....: Powerine
DATE SAMPLED....: 12/13/95
TIME SAMPLED....: 10:17
WORK DESCRIPTION...: MW 202

LABORATORY I.D...: 953702-0011
DATE RECEIVED...: 12/15/95
TIME RECEIVED...: 08:09

REMARKS..... H2O PLASTIC

TEST DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	TECH
Metals Digestion-Aqueous	COMPLETED		N/A	EPA 3010A	12/22/95	S A
Metals		*10		EPA 6020	12/22/95	EAW
Lead (Pb)	ND	0.050	mg/L	EPA 6020		
	·.					

1250 Gene Autry Way Anaheim, CA 92805 (714) 937-1094

PAGE:11

LABORATORY TESTS RESULTS

12/27/95

JOB NUMBER: 953702

CUSTOMER: Miller Brooks Env.

ATTN: John Tecchia

CLIENT I.D.....: Powerine
DATE SAMPLED....: 12/13/95
TIME SAMPLED....: 09:10
WORK DESCRIPTION..: MW 203

COMPLETED		N/A	EPA 3010A	12/22/95	
				16/66/33	SA
	*10		EPA 6020	12/22/95	EAW
ND	0.050	mg/L	EPA 6020		
	ND	ND 0.050	ND 0.050 mg/L	ND 0.050 mg/L EPA 6020	ND 0.050 mg/L EPA 6020

LABORATORY TESTS RESULTS

12/27/95

JOB NUMBER: 953702 CUSTOMER: Miller Brooks Env. ATTN: John Tecchia

CLIENT I.D..... Powerine DATE SAMPLED.....: 12/13/95 TIME SAMPLED....: 15:18
WORK DESCRIPTION...: MW 204

LABORATORY I.D...: 953702-0001 DATE RECEIVED ...: 12/15/95 TIME RECEIVED: 08:09 REMARKS..... H20 PLASTIC

TEST DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	TECHN	į
Metals Digestion-Aqueous	COMPLETED		N/A	EPA 3010A	12/22/95	S A	1
Metals		*10		EPA 6020	12/22/95	EAW	
Lead (Pb)	ND	0.050	mg/L	EPA 6020			
							1
							1
	··.						
		:					
							ı

1250 Gene Autry Way Anaheim, CA 92805 (714) 937-1094

PAGE:1

LABORATORY TESTS RESULTS

12/27/95

JOB NUMBER: 953702 CUSTOMER: Miller Brooks Env. ATTN: John Tecchia

CLIENT I.D.....: Powerine DATE SAMPLED....: 12/13/95 TIME SAMPLED....: 08:30
WORK DESCRIPTION...: MW 205

LABORATORY I.D...: 953702-0008 DATE RECEIVED...: 12/15/95 TIME RECEIVED...: 08:09 REMARKS..... H20 PLASTIC

TEST DESCRIPTION	FINAL RESULT		UNITS OF MEASURE	TEST METHOD	DATE	TECH
Metals Digestion-Aqueous	COMPLETED		N/A	EPA 3010A	12/22/95	S A
Metals		*10		EPA 6020	12/22/95	EAW
Lead (Pb)	ND	0.050	mg/L	EPA 6020		
	w.					

TESTS LABORATORY RESULTS

12/27/95

JOB NUMBER: 953702

CUSTOMER: Miller Brooks Env.

ATTN: John Tecchia

CLIENT I.D..... Powerine DATE SAMPLED....: 12/13/95
TIME SAMPLED....: 14:40
WORK DESCRIPTION...: MW 206

DATE RECEIVED...: 12/15/95

LABORATORY I.D...: 953702-0016

TIME RECEIVED: 08:09

REMARKS..... H2O PLASTIC

TEST DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	TECH
Metals Digestion-Aqueous	COMPLETED		N/A	EPA 3010A	12/22/95	S A
Metals		*1 0		EPA 6020	12/22/95	EAW
Lead (Pb)	ND	0.050	mg/L	EPA 6020		
	1					
	•					

1250 Gene Autry Way Anaheim, CA 92805 (714) 937-1094

PAGE:16

LABORATORY TESTS RESULTS

12/27/95

JOB NUMBER: 953702 CUSTOMER: Miller Brooks Env.

ATTN: John Tecchia

CLIENT I.D......: Powerine
DATE SAMPLED....: 12/13/95
TIME SAMPLED....: 13:50
WORK DESCRIPTION...: NW 501

FINAL RESULT LIMITS/*DILUTION UNITS OF MEASURE TEST DESCRIPTION TEST METHOD DATE TECHN COMPLETED N/A **EPA 3010A** 12/22/95 Metals Digestion-Aqueous SA Metals *10 EPA 6020 12/22/95 EAW 0.050 Lead (Pb) ND mg/L EPA 6020

> 1250 Gene Autry Way Anaheim, CA 92805 (714) 937-1094

PAGE:15

LABORATORY TESTS RESULTS

12/27/95

JOB NUMBER: 953702 CUSTOMER: Miller Brooks Env.

CLIENT I.D..... Powerine

DATE SAMPLED.....: 12/13/95
TIME SAMPLED....: 16:15
WORK DESCRIPTION...: MW 502

ATTN: John Tecchia

LABORATORY I.D...: 953702-0004
DATE RECEIVED...: 12/15/95
TIME RECEIVED...: 08:09

REMARKS..... H20 PLASTIC

TEST DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	TEC
Metals Digestion-Aqueous	COMPLETED		N/A	EPA 3010A	12/22/95	s A
Metals		*10		EPA 6020	12/22/95	EAV
Lead (Pb)	ND	0.050	mg/L	EPA 6020		
	**.					

LABORATORY TESTS RESULTS

12/27/95

JOB NUMBER: 953702 CUSTOMER: Miller Brooks Env.

ATTN: John Tecchia

CLIENT I.D....: Powerine
DATE SAMPLED...: 12/13/95
TIME SAMPLED...: 10:50
WORK DESCRIPTION...: MW 503

TEST DESCRIPTION	FINAL RESULT	LINITS/*DILUTIO	UNITS OF MEASURE	TEST METHOD	DATE	TECHI
Metals Digestion-Aqueous	COMPLETED		N/A	EPA 3010A	12/22/95	S A
Metals		*10		EPA 6020	12/22/95	EAW
Lead (Pb)	ND	0.050	mg/L	EPA 6020		
	10					
	··-					

1250 Gene Autry Way Anaheim, CA 92805 (714) 937-1094

PAGE:12

LABORATORY TESTS RESULTS

12/27/95

ATTN: JOB NUMBER: 953702 CUSTOMER: Miller Brooks Env. John Tecchia

CLIENT 1.D..... Powerine DATE SAMPLED.....: 12/13/95 TIME SAMPLED.....: 15:45
WORK DESCRIPTION...: NW 504

LABORATORY I.D...: 953702-0003 DATE RECEIVED: 12/15/95 TIME RECEIVED...: 08:09

REMARKS..... H20 PLASTIC

				Ľ			
TEST DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	TECHN	4
Metals Digestion-Aqueous	COMPLETED		N/A	EPA 3010A	12/22/95	S A	
Metals		*10		EPA 6020	12/22/95	EAW	
Lead (Pb)	ND	0.050	mg/L	EPA 6020			
							'
							ľ
							'
							1
**							1
							1
							8
							١
							1
	1	1	1		l		

LABORATORY TESTS RESULTS

12/27/95

JOB NUMBER: 953702 CUSTOMER: Niller Brooks Env. ATTN: John Tecchia

CLIENT I.D.....: Powerine
DATE SAMPLED....: 12/13/95
TIME SAMPLED....: 17:05
WORK DESCRIPTION..: MW 600

LABORATORY I.D..: 953702-0005
DATE RECEIVED...: 12/15/95
TIME RECEIVED...: 08:09
REMARKS...... H20 PLASTIC

TEST DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	TECHN
Metals Digestion-Aqueous	COMPLETED		N/A	EPA 3010A	12/22/95	S A
Metals		*10		EPA 6020	12/22/95	EAW
Lead (Pb)	0.33	0.050	mg/L	EPA 6020		
7						
1						
į.						
; 						
1						
7						
[
·						
•						

LABORATORY TESTS RESULTS

12/27/95

JOB NUMBER: 953702 CUSTOMER: Miller Brooks Env. ATTN: John Tecchia

CLIENT I.D.....: Powerine
DATE SAMPLED....: 12/13/95
TIME SAMPLED....: 17:45
WORK DESCRIPTION...: MW 601

LABORATORY I.D...: 953702-0006
DATE RECEIVED...: 12/15/95
TIME RECEIVED...: 08:09
REMARKS...... H20 PLASTIC

TEST DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	TECH
Metals Digestion-Aqueous	COMPLETED		N/A	EPA 3010A	12/22/95	S A
1etals		*10		EPA 6020	12/22/95	EAW
Lead (Pb)	0.17	0.050	mg/L	EPA 6020		
	··.					

LABORATORY TESTS RESULTS

12/27/95

JOB NUMBER: 953702 CUSTOMER: Miller Brooks Env.

ATTN: John Tecchia

CLIENT I.D.....: Powerine
DATE SAMPLED....: 12/13/95
TIME SAMPLED....: 15:20
WORK DESCRIPTION...: EQUIP BLK

LABORATORY I.D...: 953702-0002
DATE RECEIVED...: 12/15/95
TIME RECEIVED...: 08:09
REMARKS...... H20 PLASTIC

TEST DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASU	RE TEST METHOD	DATE	TECH
Metals		*1		EPA 6020	12/22/95	EAW
Lead (Pb)	ND	0.005	mg/L	EPA 6020		
· •						
7						
,						
7	w.					
1						
7						
l						
Ť						
l						
1						
	l		1	1	1	

QUALITY ASSURANCE FOOTER

METHOD REFERENCES

- (1) EPA SW-846, Test Methods for Evaluating Solid Waste, Third Edition, November 1990, and July 1992 update
- (2) Standard Methods for the Examination of Water and Wastewater, 17th Edition, 1989
- (3) EPA 600/4-79-020, Methods of Chemical Analysis for Waters and Wastes, March 1983
- (4) Federal Register, Friday, October 26, 1984 (40 CFR Part 136)
- (5) American Society for Testing and Materials, Volumes 5.01, 5.02, 5.03, 1992
- (6) EPA 600/4-89-001, Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Fresh Water Organisms
- (7) EPA 600/4-90-027, Methods for Measuring the Acute Toxicity of Effluent and Receiving Waters to Fresh Water and Marine Organisms, Fourth Edition

COMMENTS

All methods of chemical analysis have a statistical uncertainty associated with the results. Unless otherwise indicated, the data in this report are within the limits of uncertainty as specified in the referenced method. Quality control acceptance criteria are based either on actual laboratory performance or on limits specified in the referenced method. The date and time of analysis indicated on the QA report may not reflect the actual time of analysis for QC samples. All data reported on an "as received" basis unless otherwise indicated. Data reported in the QA report may be lower than sample data due to dilution of samples into the calibration range of the analysis. Sample concentrations for solid samples are calculated on an as received (wet) basis. Unless otherwise indicated, volatiles by gas chromatograpy are reported from a single column. Volatiles analyses on low level soils are conducted at room temperature.

FLAGS, FOOTNOTES, AND ABBREVIATIONS (as needed)

N.I. = Not Ignitable NA = Not analyzed

S.I. = Sustains Ignition N/A = Not applicable I(NS) = Ignites, but does not Sustain Ignition ug/L = Micrograms per liter

= Relative Percent Difference mg/L = Milligrams per liter

ND = Not detected at a value greater than the reporting limit = Not calculable due to values lower than the detection limit

= Surrogate recoveries were outside acceptable ranges due to matrix effects. (a)

= Surrogate recoveries were not calculated due to dilution of the sample below the detectable range for the surrogate. (b)

(c) = Matrix spike recoveries were outside acceptable ranges due to matrix effects.

(d) = Relative Percent Difference (RPD) for duplicate analysis outside acceptance limits due to actual differences in the sample matrix. = The limit listed for flammability indicates the upper limit for the test. Samples are not tested at temperatures

above 140 Fahrenheit since only samples which will sustain ignition at temperatures below 140 are considered flammable.

= Results for this hydrocarbon range did not match a typical hydrocarbon pattern. Results were quantified using a (f) diesel standard, however, the hydrocarbon pattern did not match a diesel pattern.

= Results for this hydrocarbon range did not match a typical hydrocarbon pattern. Results were quantified using a gasoline standard, however, the hydrocarbon pattern did not match a gasoline pattern.

(h) ≡ High dilution due to matrix effects

= Samples with results below 500 mg/L are considered hazardous

QC SAMPLE IDENTIFICATIONS

MB = Method Blank RB = Reagent Blank ICB = Initial Calibration Blank CCB = Continuing Calibration Blank MD = Matrix Duplicate CS = Calibration Standard ICB = Initial Calibration

Verification CCV = Continuing Calibration Verification

SB = Storage Blank MS = Matrix Spike

MSD = Matrix Spike Duplicate BS = Blank Spike SS = Surrogate Spike

LCS = Laboratory Control \$tandard RS = Reference Standard

SUBCONTRACTED LABORATORY LOCATIONS

Core Laboratories: Aurora, Colorado(ELAP #1933) *AU Casper, Wyoming *CA Corpus Christi, Texas *CC *HP Houston, Texas Lake Charles, Louisiana *LC Long Beach, California ±LR

Aquatic Testing Laboratories:

Ventura, California

±ΑΤ

1250 Gene Autry Way Anaheim, CA 92805 (714) 937-1094

Rev. 23 /usr/nick/wpwork/gafooter23 8/12/94

Sent the best pudgment at Gore Laboratonies. Core Laboratonies, beweiver, assumes no essponsibility and makes so warrang a representations, express or implied, as to the productivity proper wereations, or prohibitioness of any eig, gas, so all or other mineral, property, well or sand in commedian with which, auch report is used or resed upon for any reason whatsserver. This report shall not the reproduce ed except in its enterety, wellow the written approval of Care Laboratories.

10

1250 E Gone Autry Way

17141 937 1091

(800) 404 7673

Anaheim, California 92805

CORE LABORATORIES, INC.

CHAIN OF CUSTODY RECORD

3645 Beglis Parkway

(318) 583 4926

(800) 259 4926

Sulphur, Louisiana 70663

Long Beach, California 90807

(310) 595 8401

(800) 814 3433

Houston, Texas 77075

(713) 943 9776

(800) 734-2673

NO. A VINS

												/ 2		
cus.	TOMER INFORMATION		PRO	JECT INFO	RMATION	1		ANALYSIS METHOS	, /	//	//	7//	7/	
JOHOANY -11/1/6	a Brook En.	PROJECT NAM	ME/NUMBER	our	ine		S	/E	/,/	//	/ /		/ /	
***	e Brooks Em		BILI	ING INFOR	MATION		INEF	A STATE OF THE STA	Agg//	/ /	//	/ / /		
	Zench Blud stero	BILL TO:	bures	ine 6	il Com	any	NTA	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ኧ `/	//	/ /	///		
	solor Beach CA	ADDRESS:	7350	LAK	e land t	Casa	OF CONTAINERS	\$ 4)	///	/ /	//	/ / /ı	AB JO	OB NO.
	92618	PO	? Box	2108	Saula Fe	Secing	哥	Ex. Avg	' / /		/ /	//[
PHONE 966	-9161	PHONE:	211-6	111	Land F Santa Fa 90670 -	3057	UMB	1 /1/	///	/ /	//	/ / └		
FAI 965	-9163	FAX	219-83	22°0 NO.:			Z		' / /		/ /			
SAMPLE NO	SAMPLE DESCRIPTION	SAMPLE DATE	SAMPLE TIME	SAMPLE MATRIX	CONTAINER TYPE	PRESERV.		/ Kg/ /				REMARI	KS / PRE	CAUTIONS
HW104		12-13-45	0190	1120	SOOMLPL									
8 mu 205			0830		1									
ww.203			0910											
mw101			0940											
1 mw202			1017					V						
2 mw 503			1050											
201			1125											
nu 103			1207								1			
5 mw501			1350								11			
na zer		¥	1940	Y	Ψ									
SAMPLER FLON	dy Hogbin		SHIPMENT N	METHOD:					AIRBILL NO					
REQUIRED TURNAROUND	SAME DAY 24 HOURS	48 HOURS	72 HOU	AS 5 [DAYS 10 DA	YS X A		NE OTHER						
1 RELINQUISHED BY.			RELINCUISHED SIGNATURE:) BY:			\neg		ELINQUISHED IGNATURE:	BY:				DATE
PRINTER COMPANY		12-15-95 IME PR	RINTED NAME/O	COMPANY:	of Legel	nen		12-15-55 PAI	NTED NAME/CO	OMPANY:				TIME
1 RECEIVED BY	BN/MINU DROOKS		RECEIVED BY:		CCRE	$\nabla \Delta$		DATE 3. F	ECEIVED BY:					DATE
SIGNATURE		Z-1595 ·	SIGNATURE:	ee !	5.18	4		27	IGNATURE:					
ER YTED NAME COMPANY		809	RINTED NAME/O	OMPANY (2. Bell	/Cod.	<u>ک</u>	TIME O 7 PRI	NTED NAME/C	OMPANY:				TIME
* RUSH TURNAROUND M	AY REQUIRE SURCHARGE [] Autora (Denver), Colorado	Cass	ser, Wyoming		Corpus Christi, Texa	ıs		☐ Howston, Texas		Lake	: Charles, L	ovisiana	☐ Lone Be	each, California
1250 F Gene Autr	Way 10703 E Bethany Drive		West 1st Street		1733 North Padre Is	land Drive		8210 Mosley Ro	ad	3645	Beglis Par	kway	3700 C	terry Avenue

(800) 548-8228 ONIOMERI

(512) 289 2673

Corpus Christi, Texas 78408

(307) 235-5741

(800) 666-0306

Casper, Wyoming 82601

10703 E. Bethany Drive

Aurora, Colorado 80014

(303) 751 1780

(800) 972 2673

Long Beach, California 90807 (310) 595 8401

CORE LABORATORIES, INC.

Anaheim, California 92805

(714) 937 1091

(800) 404 2673

Aurora, Colorado 80014

(303) 751 1780

(800) 972 2673

CHAIN OF CUSTODY RECORD

CUS	STOMER INFORMATION		PRO	JECT INFO	RMATION				16	9 /	$\overline{}$	7	//	777	77	/	
COUPANY ////	Brocks En	PROJECT	NAME/NUMBER:	lowe.	uno,		ွှ			$\sqrt{\Lambda^{\lambda}}$	/ /	/ /			//		
SEND REPORT TO	Brocks Env			LING INFOR			Ä	/	N. S. S.	`/ / \			/ /	' / /			
ADDRESS 8700	Bench Blogst.	BILL TO:	144	in f	waine .	Oil	¥	1/5	ક્ષું કું કું કું કું કું કું કું કું કું કું કું કું	/ <u>a</u> /	//	/ /					
Avado	is for feech, CA	ADDRESS	2354				OF CONTAINERS	ZZ Z	REOUESTHO	p /	/ /	//	/ /	/	LAB .	JOB I	NO.
	92648	P.	O. Box	2108	land Lo. Sarta Fil 96670-38	Sun	O A	A	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7 /	//	/ /		//[702	
2-CVE 965	-9161	PHONE	949.6	11/ 5	96670-38	27	W W	. /	⟨e У	//			/ /	/ / l			
	-9163	FAX	941-8	PO NO :			Ž	//3	X/ /	/ /	/ /	/ /					
SAMPLE NO.	. SAMPLE DESCRIPTION	SAMPLE DATE	E SAMPLE	SAMPLE MATRIX	CONTAINER TYPE	PRESERV.	1	//		//			/ /	REMAR	KS / PF	RECAU	TIONS
po 2019		12-13-	951518	110	SOOMISL			V									
FILL BIE		1	1520		1			V									
mu509			1545					V									
mu 502			1615														
mu 600			1705					V									
NW 601		1	17-15	1	V			V									
SAMPLER JA	nda /Logbin		SHIPMENT M	ETHOD:		2		LĖ	<u> </u>	AIRBILL	NO.:						
REQUIRED TUBNAROUND	SAME DAY 24 HOURS	48 HOURS	72 HOUS	RS 5 D	DAYS 10 DA		ROUTIN	-	THER								
1 RELINQUISHED BY	11	DATE	2. RELINQUISHEDSIGNATURE:	BY:			\dashv	DATE		RELINQUISI SIGNATURE						DAT	ΓE
STATED NAME COMBANA	A di	12 75-91 TIME	PRINTED NAME/C	OMPANY A	Siger	merce		22/5. TIME		INTED NAM	E/COMPA	NY.				TIM	ΙΕ
DECEMBED ON SE	gain / M. Hen brown	5			one			70									-
1 RECEIVED BY: SIGNATURE		DATE 25%	2. RECEIVED BY:	es V) RO(1		DATE		RECEIVED I SIGNATURE						DAT	C
CEINTED NAME COMPANY	Colo	X.07	PRINTED NAME/C	OMPANY 1) B	DEC){Qa	TIME	OPR	INTED NAM	E/COMPA	NY:				TIMI	E
* PUSH TURNAROUND M	AY REQUIRE SURCHARGE	19.0	5,010			7 - 7											
Anaheim, Californi 1250 E. Gene Autr	Aurora (Denver), Coforad v Way 10703 E. Berhany Drive	. 🗆	Casper, Wyoming 120 West 1st Street	[Corpus Christi, Texa 1733 North Padre Isl	i and Drive		Hous 8210	ston, Texas Mosley R	oad		Lake Ch 3645 Be	aries, Lou glis Parkv		Long 370/	g Beach, Califo O Cherry Aven	ornia IUP

Corpus Christi, Texas 78408

(512) 289-2673

(800) 548-8228

Houston, Texas 77075 (713) 943 9776

(800) 734-2673

Sulphur, Louisiana 70663

(318) 583 4926

(800) 259 4926

Casper, Wyoming 82601 (307) 235 5741

(800) 666 0306

CORE LABORATORIES
ANALYTICAL REPORT.

Job Number: 960070 Prepared For:

Powerine Oil Company Matt Winefield 12354 E. Lakeland Road Santa Fe Springs, CA 90670

Date: 01/17/96

Signature Signature

Date:

Name: Timothy A. Scott

Core Laboratories 1250 Gene Autry Way Anaheim, CA 92805

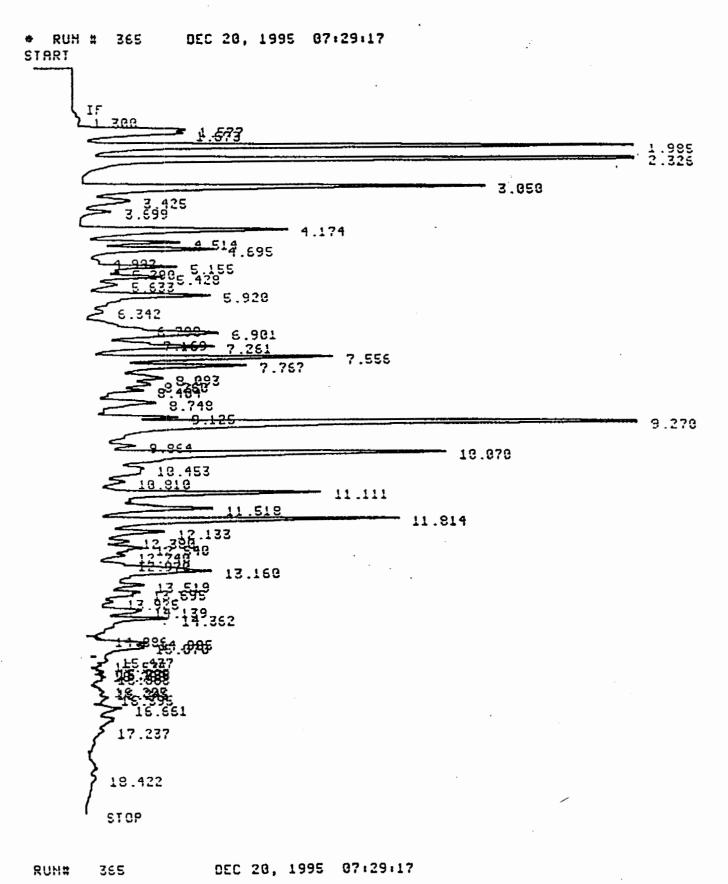
Title: LABORATORY MANAGER

REVISED REPORT

CAELAP. 1174 LAC.S.D. 10146

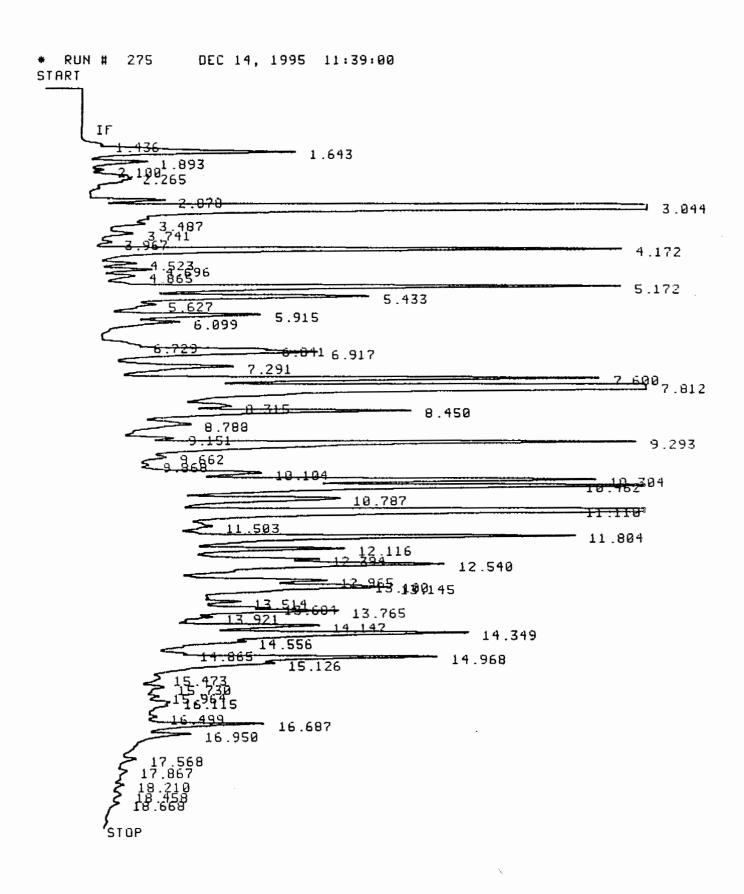
JOB NUMBER: 960070	CUSTOMER:	Powerine Oil Co	mpany		ATT	N: Matt	Winefield		
SAMPLE NUMBER: 1									10:10
PROJECT: P.O.C 63-01		SAMPLE: MW	605			R	EM: H2O PLAS	TIC	
SAMPLE NUMBER: 2 PROJECT: P.O.C 63-01		01/11/96 T SAMPLE: MW		D: 11:35	SAMPLE		1/10/96 EM: H20 PLAS		10:33
SAMPLE NUMBER: 3 PROJECT: P.O.C 63-01		01/11/96 T SAMPLE: MW		D: 11:35	SAMPLE		1/10/96 EM: H20 PLAS		10:50
SAMPLE NUMBER: 4 PROJECT: P.O.C 63-01		01/11/96 T SAMPLE: MW		D: 11:35	SAMPLE		1/10/96 EM: H20 PLAS		11:10
SAMPLE NUMBER: 5 PROJECT: P.O.C 63-01		01/11/96 T SAMPLE: MW		D: 11:35	SAMPLE		1/10/96 EM: H20 PLAS		11:40
SAMPLE NUMBER: 6 PROJECT: P.O.C 63-01		01/11/96 T		D: 11:35	SAMPLE		01/10/96 REM: H2O PLAS		13:30
TEST DESCRIPTION		SAMPLE 1	SAMPLE 2	SAMPLE 3	SAMPLE 4	SAMPLE	5 SAMPLE 6	UNITS OF ME	ASURE
Lead (Pb), dissolved		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	mg/L	
			REVISE) REPO	RT				
						Anahe	Gene Autry W eim, CA 928 937-1094		

PAGE:1


TESTS RESULTS LABORATORY 01/17/96 JOB NUMBER: 960070 CUSTOMER: Powerine Oil Company ATTN: Matt Winefield SAMPLE DATE: 01/10/96 SAMPLE TIME: 14:00 SAMPLE NUMBER: 7 DATE RECEIVED: 01/11/96 TIME RECEIVED: 11:35 SAMPLE: MW 107 PROJECT: P.O.C 63-01 REM: H20 PLASTIC SAMPLE NUMBER: 8 DATE RECEIVED: 01/11/96 TIME RECEIVED: 11:35 SAMPLE DATE: 01/10/96 SAMPLE TIME: 14:15 PROJECT: P.O.C 63-01 SAMPLE: MW 106 REM: H2O PLASTIC DATE RECEIVED: 01/11/96 TIME RECEIVED: 11:35 SAMPLE NUMBER: 9 SAMPLE DATE: 01/10/96 SAMPLE TIME: 14:35 PROJECT: P.O.C 63-01 SAMPLE: MW 105 REM: H2O PLASTIC

TEST DESCRIPTION	SAMPLE 7	SAMPLE 8	SAMPLE 9			UNITS C	F MEASURE
Lead (Pb), dissolved	<0.005	0.010	0.005		,	mg/L	
		REV	SED RE	DOD-			
			OLD M	PURI			

re-statts MOOZI - Gathers consinerally company - Atter Hetsaulmidiste										
444		LYSIS	e de la colonia de la despensión de la colonia de la c La colonia de la colonia d		ICATES		CE STANDARDS		MATRIX SPIKE	
MALYSIS TYPE	ANALYSIS SUR-TYPE	AMALYSIS	ANALYZFO VALUE (A)	DUPLICATE VALUE (B)	RPD or	TRUE VALUE	PERCENT RECOVERY	ORIGINAL VALUE	SPIKE ADDED	PERCENT RECOVERY
ALLINE ILEV	eed (Pb), di INIT/DEL 0.0	ssolved 65 UNITS:mg/	100000000000000000000000000000000000000	DATE/TIME A METHOD REFE	NALYZED:01/1 RENCE :EPA	7/9 6 -14:56 6020	Lead 60	growthad ass. C	DE BATCH	umber; glbs/ Chilotan; ea
LANK SLANK TANDARD TANDARO PIKE UPLICATE	ICB CCB ICVS CCVS MATRIX MS/MSD	18011796 US011796 M94388 M94388 960071-4 960071-4	<0.005 <0.005 1.073 1.034 0.457 0.457	0.464	z	1.0	107 103	o	U.S U	91
										:


PAGE:10

EPA 8020 / MODIFIED 8015 GASOLINE

AREAX				
R!	AREA	TYPE	- WIDTH	AREAX
1.300	19526	UН	.175	.14365
1.577	152906	HH	.098	1.12488
1.673	196909	HH	.129	1.44859
1.985	817 4 90	HH	.104	6.81488
2,326	1822174	HH	.096	7.51979
3.050	713777	нн	.126	5.25102
3.425	153798	нн	.195	1.13144
3.699	69902	нн	.131	.51425
4.174	434696	нн	.149	3.19791
4.514	151189	нн	.109	1.18581
4.695	265571	HH	.137	1.95372
4.992	48652	нн	.111	.29906
5.155	185341	HH	.115	1.21636
5.290	56071	HH	.099	.41250
5 ,428	152099	HH	.131	1.19243
5.633	102217	HH	.168	.75198
5.920	255940	нн	.141	1.95643
6.342	78775	HH	.190	.57952
8.799	159572	нн	.156	1.17392
€.901	358700	нн	.190	2.63994
7.169	81869	нн	.078	.60081
7.281	273151	нн	.142	2.00948
7.556	394557	нн	.112	2.90262
7.767	352550	нн	.149	2.59359
8.093	222398	нн	.181	1.63683
9.260	149813	нн	.141	1.10212
9. 4 04 9.749	117692	HH	.122	.96592
9.125	231447	нн	.284	1.70268
9.128	141033	нн	.098	1.03753
9.278	1427479	HH	.140	19.50148
18.970	116656 9522 0 8	HH	.139	.85820
10.453	111323	HH HH	.170 .117	6.34297
18.818	118809	HH	.174	.81897 .87404
11.111	461421	HH	.139	3.39452
11.518	343697	нн	.181	2.52946
11.814	590817	нн	.131	4.27297
12.133	192915	нн	.157	1.41921
12.390	97423	нн	.120	.64314
12.540	158856	нн	.183	1.24222
12.743	85987	нн	.128	.63258
12.970	68988	нн	.184	.50752
13.160	394584	HH	.212	2.93267
13.519	126540	HH	.13?	.93091
13.695	77983	HH	.089	.57355
13.925	55982	HH	.110	.41184
14.139	176088	HH	.198	1.29542
14.362	183835	HH	.145	1.35241
14.886	23898	нн	.871	.17581
14.985	100290	нн	.105	.73780
15.070	49186	нн	.055	.38194
15.437	47947	нн	.113	.35273
15.535	16612	нн	.031	.07368
15.725	27819	нн	.0??	.20465
15.750	13209	нн	.037	.09717
15.785	10134	нн	.030	.07455
15.863	29130	HH	.078	.21430
16.205	37427	HH	.114	.27534
16.246	18849	HH	E20.	.13867
16.395	77757	HH	.189	.57203
16.661	124702	нн	.208	.91739
17.237	7011	88	.379	.05158
18.422	12620	ŲР	.134	.09284

TOTOL 0000-: 20070-07

MW-504 8020/8015 CHROMATOGRAM

EPA 8020 / MODIFIED 8015 GASOLINE

AREA%				
RI	AREA	TYPE	WIDTH	AREA%
1.436	29631	вн	.100	.06757
1.643	394767	нн	.134	1.16662
1.893	106316	нн	.116	.31419
2.100	25631	нн	.080	.07575
2.265	54285	нн	. 083	.16042
2.878	103568	нн	.088	.30607
3.044	4238845	нн	. 099	12.52671
3.487	199244	нн	.124	.32284
3.741	112066	нн	.155	.33118
3.967	53319	нн	.123	.15757
4.172	799359	HH	.109	2.36220
4.523	86669	HH	.112	.25613
4.696	109511	нн	.111	.32363
1.865	114089	HH	.152	.33716
5.172 5.433	899487	HH	.123	2.65818
	523272	HH	.132	1.54636
5.627 5.915	188756 319518	HH HH	.183 .129	.55782
6.099	270480	НН	.123	.94425 .79933
6.729	125789	нн	.152	,37173
5.841	184167	HH	.072	.54425
6.917	+86152	нн	.149	1.43669
7.291	400513	нн	.190	1.18360
77.600	782615	нн	.111	2.31280
7.812	3364730	нн	.132	9.94351
8.315	538318	нн	.144	.88337
8.450	656956	нн	.145	1.94145
8.788	357597	нн	.233	1.05678
9.151	140585	нн	.189	.41546
9.293	1224751	НН	.162	3.61941
9.662	200304	нн	.175	.61558
9.868	116097	нн	.121	.34309
10.104	463282	нн	.186	1.36910
18.304	884528	нн	.126	2.61397
10.462	1330450	нн	.156	3.93177
187.81	742540	нн	.209	2.19437
11.110	1939829	нн	.138	5.73262
11.503	415942	нн	. 2-28	1.22654
11.804	1199082	нн	.178	3.54355
12.115	525368	нн	.144	1.55250
12,394	408290	нн	.124	1.20659
12.540	893284	нн	.179	2.63985
12.965	528014	нн	.156	1.56040
13.100	244665	нн	.863	.72304

13.145	782628	нн	.167	2.07642
13.514	253193	нн	.115	.74824
13.684	269282	нн	.103	.79579
13.765	415869	нн	.117	1.22898
13.921	200331	нн	.110	.59202
14.147	498837	нн	.149	1.44817
14.349	843621	нн	.159	2.49308
14.556	296404	нн	.131	.87594
14.865	149032	нн	.102 -	.44842
14.968	641078	нн	.131	1.89453
15.126	\$39895	HH	. 202	1.59551
15.473	240449	нн	.217	.71958
15.730	276960	нн	.238	.81848
15.964	133708	нн	.121	.39514
16.115	131950	нн	.105	.38994
16.499	121826	нн	.113	.36002
16.687	461912	нн	.183	1.36505
16.950	521320	HH	.341	1.54962
17.568	156360	HH	.201	.46208
17,867	110883	нн	.171	.32745
18.219	103735	нн	.171	.30656
18.458	127369	нн	.223	.37648
18.668	190375	HH	.354	.56260

MW-504 8020/8015 CHROMATOGRAM DATA

Chromatogram

Sample Name : MW-504

: C:\TC4\DATA\DATA4\B119002A.raw FileName

: GC2_2887 Method

Start Time : 0.00 min ale Factor: 0.0

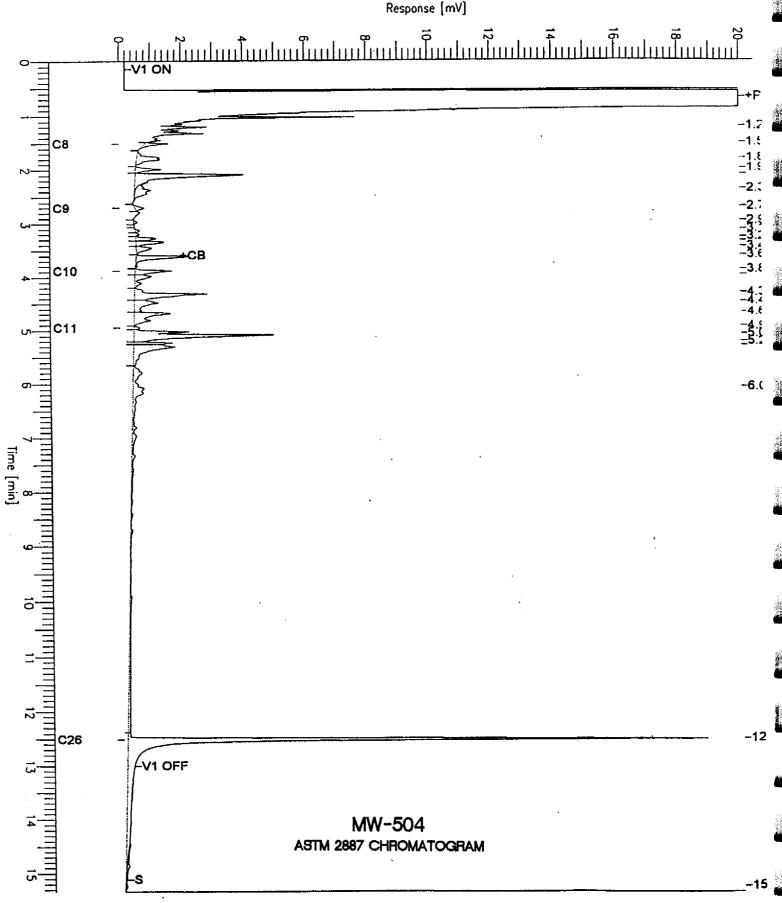
End Time : 15.34 min

Plot Offset: 0 mV

Sample #: 177

Date: 12/31/95 03:33 PM

Time of Injection: 12/31/95 03:17 PM


Low Point : 0.00 mV

High Point : 20.00 mV

Page 1 of 1

Plot Scale: 20.0 mV

oftware Version: 4.0<1C29>

Sample Name : MW-504 Time : 12/31/95 03:33 PM

Sample Number: 177 Study : POWERINE

Operator

Instrument : GC2 Channel: A A/D mV Range: 1000

AutoSampler : NONE Rack/Vial : 30504/40

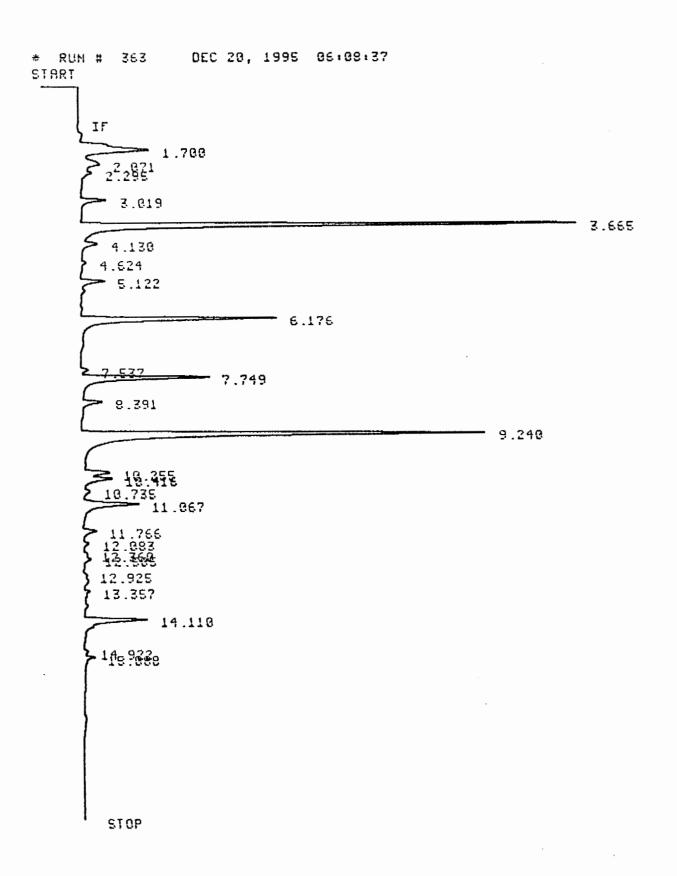
Interface Serial # : NONE Data Acquisition Time: 12/31/95 03:17 PM

Delay Time : 0.00 min. End Time : 15.34 min.

Sampling Rate : 2.5000 pts/sec

Raw Data File : C:\TC4\DATA\DATA4\B119002A.RAW Result File : C:\TC4\DATA\DATA4\B119001Y.RST

Inst Method : C:\TC4\GC2\GC2_2887 from C:\TC4\DATA\DATA4\B119001Y.RST
Proc Method : C:\TC4\GC2\GC2_2887
Calib Method : C:\TC4\GC2\GC2_2887
Sequence File : C:\TC4\GC2\GC2D2887.SEQ

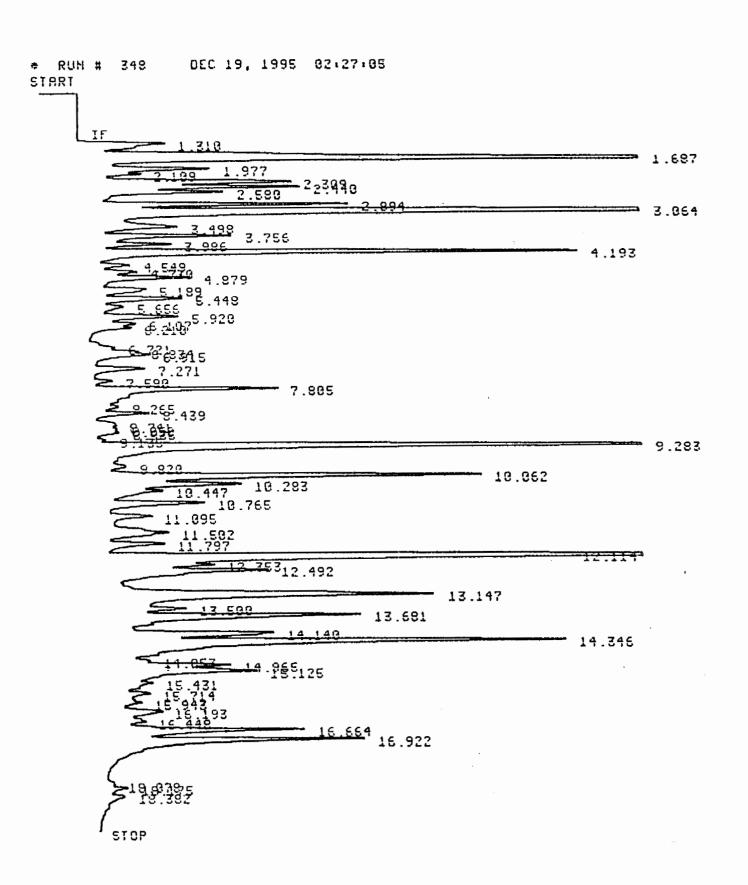

Sample Volume : 1 uL Area Reject : 1000.000000

Sample Amount : 1.0000 Dilution Factor : 1.00

ASTM-D-2887 Carbon Chain

Component Name	Time [min]	Area [µV·s]	Area [%]	Response Factor	Raw Amount	Amount [%]	Adjusted Amount
	1.21	1953	0.92	796	2.45	0.92	2
C8	1.51	1848	0.87	796	2.32	0.87	2
C8-C9	2.76	45621	21.50	796	57.31	21.50	57
C10 - C11	4.79	59374	27.98	796	74.59	27.98	75
C12 - C13	6.31	20294	9.56	796	25.49	9.56	25
C24 - C27	12.40	81355	38.34	796	102.21	38.34	102
C32 - C35	14.95	1741	0.82	796	2.19	0.82	2
		212185	100.00		266.56	100.00	267

MW-504 ASTM 2887 CHROMATOGRAM DATA


MW-605 8020/8015 CHROMATOGRAM

66:60:37
1995
DEC 20,
E E E E
21 22 23 23 01

EPA 8020 / MODIFIED 8015 6850LINE

	0; 0;	6363	00	10 00 00 00 00 00 00	5000	9411	5792	02 03	3980	952	4452	5292	3000	4389	9,	1999	20.45 B4-03	4.28977	.9674	5466	3013	9638	3698	000	227	(A (D)	371
)	하	Ċ	Ü	-1	9	ŵ	디	~ ~	Ö	Ċ	-4	년 (1	12	61	(r)	וט	1.45	'n	ďΩ	Ē)	ŌΣ	-4	ūΣ	(1)		
];];								프	∄
	<u>ا</u> نا ن	700 710 71	4.	962	405	721	4 4 2 2	00	932	00 (4)	25.4	(C) (C)	900	7.47	0 0 0	000	01 03 00	110422	9000	5	072	117.	912	937	4-4-	71 71 00	μ) Π)
2010a		-3	G3 L-	, 0,	ᇊ	Ū Ω	H)	.6. 51	 	-1	(U)	r- 4-	ξ.) Ω	C1 4-	9.28	9.41	C)	11.867	-25	2 .0 .0	2.36	7. 03.	26. 5	3.00	4 - 1 - 4	4. 0.	ນ ອີ

TOTAL AREA-2913829 MUL FACTOR-1.0000E+00 MW-605 8020/8015 CHROMATOGRAM DATA

MW-607 8020/8015 CHROMATOGRAM

EPR 8020 / MODIFIED 8015 GASOLINE

AREAX				
RI	AREA	TYPE	WICTH	AREA%
1.310	200248	HH	.163	.93196
1.687	1382661	HH	.132	€.43491
1.977	215126	нн	.116	1.00120
2.109	71652	НН	.082	.33347
2.309	346794	нн	.117	1.61398
2.448	290103	нн	.394	1.35014
2.590	262593	нн	.129	1.22211
2.894	336321	нн	.090	1.56524
3.064	1988606	HH	.184	9.25498
3.498	281008	HH	.203	1.30781
3.756	265876	HH	.124	1.23739
3.986	141570	HH	.109	.65887
4.193	932792	нн	.122	3.97592
4.549	97924	HH	.123	.40920
4.730	95660	HH	.117	.44520
4.879	233335	HH	.149	1.08594
5.139	163179	 HH	.174	.75944
5.448	192703	HH	.134	.89684
5.656	189735	HH	.176	.51971
5.920	184943	HH	.133	.86073
6.107	79125	HH	.188	.36825
6.210	114506	HH	.157	.53291
5.721	79538		.157	.37017
	65928	HH	.080	.30683
6.834 6.915	181205	HH	.164	.75025
		HH HH	.167	.75025 .62467
7.271 7.590	134223 66468	## ##	.147	.30934
7.895	344450	71 24	.175	1.60307
8.265	75757	HH	.138	.35257
8.439	125974	лл НН	.131	.58582
8.741	83554	HH	.163	.38886
8.850	44156	HH	.094	.20550
8.886 8.935	71469	HH	.131	.33262
9.135	34831	HH	.096	.16210
9.293	1238015	HH	.128	5.76173
9.828	105678	HH	.166	.49183
10.062	693325	НН	.126	3.22674
10.283	298799	HH	.134	1.39061
10.283			.194	1.03647
10.765	222705	HH	.152	1.22134
11.095	262427 177299	HH	.180	.92515
		HH		
11.502	327010 197572	HH HH	.268 .170	1.52191 .91950
11.797 12.114			.114	7.47126
12.114	1605341 186528	HH HH	.101	.96910
				2.41705
12.492	519348	HH	.201	
13.14?	1920052	HH	.211	4.74732
13.500	212155	HH	.148	.98737

MW-607 8020/8015 CHROMATOGRAM DATA

13.681	573687	HH	.149	2.66994
14.140	414505	HH	.156	1.92911
14.346	1095510	HH	.165	5.09851
14.853	95018	HH	.101	.44221
14.965	222956	HH	.108	1.03764
15.125	517837	HH	.214	2.41002
15.431	128585	HH	.132	.59844
15.714	147127	нн	159	.69473
15.943	106418	HH	.132	.49527
16.193	237072	HH	.215	1.10333
16.449	141974	HH	.165	.66075
18.884	490773	HH	.161	2.28406
18.922	795971	нн	.205	3.70445
18.078	77479	HH	.185	.36059
18.175	93552	HH	.155	.43539
18.392	119278	HH	.215	.55847

TOTAL AREA-2.1487E+07

MW-607 8020/8015 CHROMATOGRAM DATA

Chromatogram

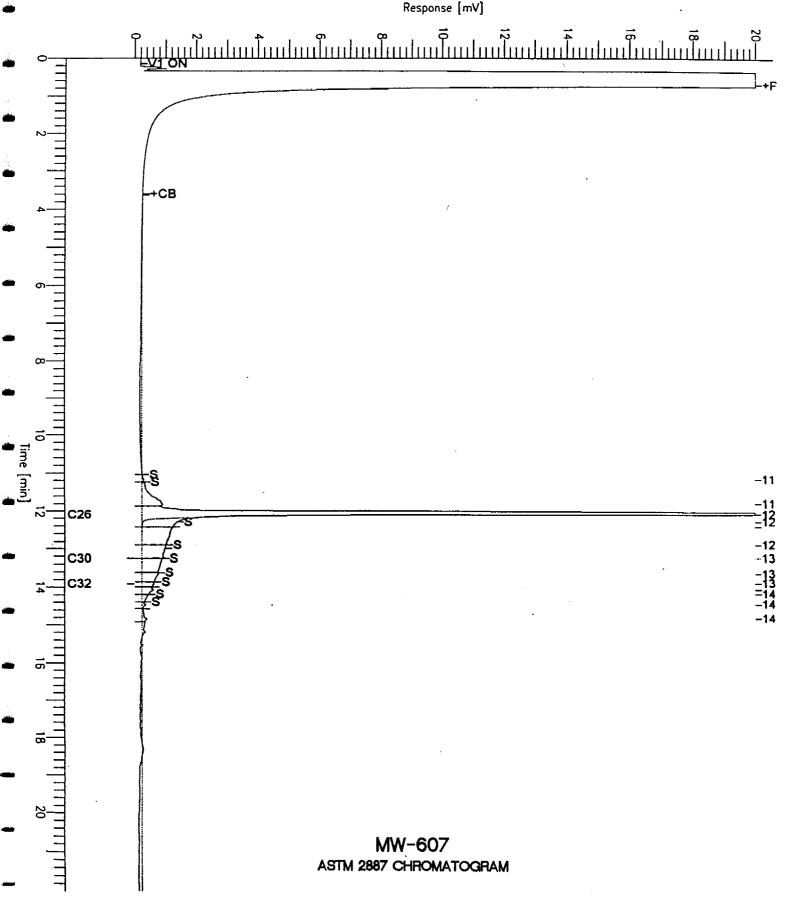
Sample Name : MW-607 (A2446-2)
FileName : C:\TC4\DATA\DATA\A2446AAE.RAW

Method Start Time : 0.00 min ale Factor: 0.0

End Time : 21.99 min Plot Offset: 0 mV

Sample #: 104

Date: 12/18/95 10:29 AM


Time of Injection: 12/18/95 09:59 AM Low Point : 0.00 mV

Plot Scale: 20.0 mV

High Point : 20.00 mV

Page 1 of 1

Software Version: 4.0<1C29>

Sample Name : MW-607 (A2446-2)

Sample Number: 104 Study: TRI HYDRO

Operator :

Channel: A A/D mV Range: 1000 instrument : GC2

Time : 12/18/95 10:28 AM

AutoSampler : NONE Rack/Vial : 30469/5

Interface Serial # : NONE Data Acquisition Time: 12/18/95 09:59 AM

Delay Time : 0.00 min. : 21.99 min. End Time

Sampling Rate : 2.5000 pts/sec

Raw Data File : C:\TC4\DATA\DATA4\A2446AAE.RAW Result File : C:\TC4\DATA\DATA4\A2446AAE.RST

Inst Method : C:\TC4\GC2\GC2_2887 from C:\TC4\DATA\DATA4\A2446AAE.RST
Proc Method : C:\TC4\GC2\GC2_2887 from C:\TC4\DATA\DATA4\A2446AAE.RST
Calib Method : C:\TC4\GC2\GC2_2887 from C:\TC4\DATA\DATA4\A2446AAE.RST
Sequence File : C:\TC4\GC2\GC2D2887.SEQ

Sample Volume : 1 uL Sample Amount : 1.0000 Area Reject : 1000.000000

Dilution Factor : 1.00

ASTM-D-2887 Carbon Chain

Component Name	Time [min]	Area [μV·s]	Area [%]	Response Factor	Raw Amount	Amount [%]	Adjusted Amount	
C24 - C27 C28 - C31 C32 - C35	12.05 13.30 14.50	266358 34416 10032	11.07	629 629 629	423.46 54.72 15.95		423 55 16	
		310805	100.00		494.13	100.00	<u>-</u>	